Lecture 2: operators on Hilbert spaces and applications

Gabriel Dospinescu

CNRS, ENS Lyon

Abstract nonsense

(I) Recall the general setup: G is a locally compact (and countable at infinity), unimodular group (with Haar measure denoted $d g$) and $\operatorname{Rep}(G)$ is the category of continuous representations of G on Fréchet spaces.

Abstract nonsense

(I) Recall the general setup: G is a locally compact (and countable at infinity), unimodular group (with Haar measure denoted $d g$) and $\operatorname{Rep}(G)$ is the category of continuous representations of G on Fréchet spaces.
(II) The space $C_{c}(G)$ has a ring structure via the convolution product

$$
f_{1} * f_{2}(x)=\int_{G} f_{1}\left(x g^{-1}\right) f_{2}(g) d g
$$

Theorem Any $V \in \operatorname{Rep}(G)$ has a natural structure of $C_{c}(G)$-module, denoted $(f, v) \rightarrow f . v=\int_{G} f(g) g . v d g$, such that for all $f \in C_{c}(G)$ and any continuous linear form I on V we have

$$
I(f . v)=\int_{G} f(g) I(g \cdot v) d g
$$

Abstract nonsense

(I) I will only discuss the case of Hilbert representations V. Given $f \in C_{c}(G)$, the map sending $I \in V^{*}$ (topological dual) to $\int_{G} f(g) l(g . v) d g$ is a continuous linear form on V^{*}, so by Riesz' theorem there is a unique $f . v \in V$ such that $I(f . v)=\int_{G} f(g) I(g . v) d g$ for all $I \in V^{*}$. One easily checks that $\left(f_{1} * f_{2}\right) \cdot v=f_{1} \cdot\left(f_{2} \cdot v\right)$ and $\left(f_{1}+f_{2}\right) \cdot v=f_{1} \cdot v+f_{2} \cdot v$ (test these against arbitrary $\left.I \in V^{*}\right)$.

Abstract nonsense

(I) I will only discuss the case of Hilbert representations V. Given $f \in C_{c}(G)$, the map sending $I \in V^{*}$ (topological dual) to $\int_{G} f(g) /(g \cdot v) d g$ is a continuous linear form on V^{*}, so by Riesz' theorem there is a unique $f . v \in V$ such that $I(f . v)=\int_{G} f(g) I(g . v) d g$ for all $I \in V^{*}$. One easily checks that $\left(f_{1} * f_{2}\right) \cdot v=f_{1} \cdot\left(f_{2} \cdot v\right)$ and $\left(f_{1}+f_{2}\right) \cdot v=f_{1} \cdot v+f_{2} \cdot v$ (test these against arbitrary $\left.I \in V^{*}\right)$.
(II) A Dirac sequence on G is a sequence of functions $f_{n} \in C_{c}(G)$ such that for all j we have:

- $f_{j}(g) \geq 0, f_{j}\left(g^{-1}\right)=f_{j}(g)$ for all g and $\int_{G} f_{j}(g) d g=1$.
- $\operatorname{Supp}\left(f_{j}\right)$ form a decreasing sequence "tending to $\{1\}$ " in an obvious sense.

Abstract nonsense

(I) Dirac sequences always exist, and given a compact subgroup K of G we can choose them such that $f_{n}\left(k g k^{-1}\right)=f_{n}(g)$ for $k \in K$ and $g \in G$. If G is a Lie group, we can pick f_{n} smooth as well.

Theorem If $V \in \operatorname{Rep}(G), v \in V$ and $\left(f_{n}\right)$ is a Dirac sequence, then $\lim _{n \rightarrow \infty} f_{n} . v=v$.

Abstract nonsense

(I) Dirac sequences always exist, and given a compact subgroup K of G we can choose them such that $f_{n}\left(k g k^{-1}\right)=f_{n}(g)$ for $k \in K$ and $g \in G$. If G is a Lie group, we can pick f_{n} smooth as well.

Theorem If $V \in \operatorname{Rep}(G), v \in V$ and $\left(f_{n}\right)$ is a Dirac sequence, then $\lim _{n \rightarrow \infty} f_{n} . v=v$.
(II) Suppose that V is a Hilbert representation. Given $\varepsilon>0$ there is a neighborhood U of 1 such that $\|g . v-v\| \leq \varepsilon$ for $g \in U$. For n large enough we have $\operatorname{Supp}\left(f_{n}\right) \subset U$ and

$$
\begin{gathered}
\left\|f_{n} \cdot v-v\right\|=\left\|\int_{G} f_{n}(g)(g \cdot v-v) d g\right\| \leq \int_{G} f_{n}(g)\|g \cdot v-v\| d g \\
\leq \varepsilon \int_{G} f_{n}=\varepsilon
\end{gathered}
$$

Operators on Hilbert spaces

(I) Let H be a separable complex Hilbert space. An operator on H is a continuous linear map $T: H \rightarrow H$. Any operator T has an adjoint operator T^{*}, characterised by $\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle$ for $v, w \in H$ (apply Riesz!).

Operators on Hilbert spaces

(I) Let H be a separable complex Hilbert space. An operator on H is a continuous linear map $T: H \rightarrow H$. Any operator T has an adjoint operator T^{*}, characterised by $\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle$ for $v, w \in H$ (apply Riesz!).
(II) For instance, if H is a unitary representation of some G, and if $f \in C_{c}(G)$, the adjoint of the operator
$T_{f}: H \rightarrow H, v \rightarrow f . v=\int_{G} f(g) g . v d g$ is $T_{f^{*}}$, where $f^{*}(g)=\overline{f\left(g^{-1}\right)}$ (easy computation).

Operators on Hilbert spaces

(I) Let H be a separable complex Hilbert space. An operator on H is a continuous linear map $T: H \rightarrow H$. Any operator T has an adjoint operator T^{*}, characterised by $\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle$ for $v, w \in H$ (apply Riesz!).
(II) For instance, if H is a unitary representation of some G, and if $f \in C_{c}(G)$, the adjoint of the operator $T_{f}: H \rightarrow H, v \rightarrow f . v=\int_{G} f(g) g . v d g$ is $T_{f^{*}}$, where $f^{*}(g)=\overline{f\left(g^{-1}\right)}$ (easy computation).
(III) The space $B(H)$ of operators on H is a Banach algebra for the norm $\|T\|=\sup _{v \neq 0}\|T v\| /\|v\|$. The operator $T \in B(H)$ is called self-adjoint if $T=T^{*}$, unitary if $T T^{*}=T^{*} T=$ id (i.e. T is an isometry), positive if $\langle T v, v\rangle \geq 0$ for all v (such a T is then self-adjoint) and finally normal if T commutes with T^{*}.

Operators on Hilbert spaces

(I) The spectrum of $T \in B(H)$ is

$$
\sigma(T)=\{\lambda \in \mathbb{C} \mid \lambda-T \text { is not invertible }\} .
$$

By Gelfand's theory $\sigma(T)$ is a compact subset of \mathbb{C} and

$$
\max _{\lambda \in \sigma(T)}|\lambda|=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{1 / n}
$$

the spectral radius of T. If T is normal, then $\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{1 / n}=\|T\|$, since $\left\|T^{2}\right\|=\|T\|^{2}$.

Operators on Hilbert spaces

(I) The spectrum of $T \in B(H)$ is

$$
\sigma(T)=\{\lambda \in \mathbb{C} \mid \lambda-T \text { is not invertible }\} .
$$

By Gelfand's theory $\sigma(T)$ is a compact subset of \mathbb{C} and

$$
\max _{\lambda \in \sigma(T)}|\lambda|=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{1 / n}
$$

the spectral radius of T. If T is normal, then $\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{1 / n}=\|T\|$, since $\left\|T^{2}\right\|=\|T\|^{2}$.
(II) Suppose now that T is self-adjoint and let $K=\sigma(T)$. Then K is compact in \mathbb{R}, so (Stone-Weierstrass) any $f \in C(K)$ is a limit of polynomial functions p_{n}. The operators $p_{n}(T)$ converge to an operator $f(T) \in B(H)$ (use that for $p \in \mathbb{C}[T]$ is normal, thus $\left.\|p(T)\|=\max _{x \in K}|p(x)|\right)$. This yields an isometric morphism of Banach algebras $C(K) \rightarrow B(H), f \rightarrow f(T)$ (functional calculus).

Operators on Hilbert spaces

(I) An operator $T \in B(H)$ is called compact if T sends bounded subsets of H to relatively compact subsets, or equivalently T is a limit (in $B(H)$) of operators of finite rank. The set $K(H)$ of compact operators is closed in $B(H)$ and forms a two-sided ideal in $B(H)$.

Operators on Hilbert spaces

(I) An operator $T \in B(H)$ is called compact if T sends bounded subsets of H to relatively compact subsets, or equivalently T is a limit (in $B(H)$) of operators of finite rank. The set $K(H)$ of compact operators is closed in $B(H)$ and forms a two-sided ideal in $B(H)$.
(II) Say now $\operatorname{dim} H=\infty$. Then for any compact operator T we have $0 \in \sigma(T)$ and $\sigma(T) \backslash\{0\}$ is at most countable and consists of eigenvalues of T. The eigenspaces corresponding to nonzero eigenvalues are finite dimensional. If T is moreover normal, then $\operatorname{ker}(T)^{\perp}$ has an ON-basis of eigenvectors, and the corresponding eigenvalues tend to 0 .

Operators on Hilbert spaces

(I) An operator $T \in B(H)$ is called Hilbert-Schmidt (or simply HS), respectively of trace class (or simply TC) if H has an ON-basis $\left(e_{n}\right)_{n}$ such that $\sum_{n}\left\|T e_{n}\right\|^{2}<\infty$, respectively $\sum_{n}\left\|T e_{n}\right\|<\infty$.

Operators on Hilbert spaces

(I) An operator $T \in B(H)$ is called Hilbert-Schmidt (or simply HS), respectively of trace class (or simply TC) if H has an ON-basis $\left(e_{n}\right)_{n}$ such that $\sum_{n}\left\|T e_{n}\right\|^{2}<\infty$, respectively $\sum_{n}\left\|T e_{n}\right\|<\infty$.
(II) Let $H S(H)$, resp. $T C(H)$ be the sets of HS, resp. trace class operators on H.

Theorem 1) We have $T C(H)=\{A B \mid A, B \in H S(H)\}$ and $H S(H) \subset K(H)$ (thus $T C(H) \subset K(H))$.
2) $T \in B(H)$ is in $T C(H)$ if and only if $\sum_{n}\left|\left\langle T e_{n}, f_{n}\right\rangle\right|<\infty$ for any ON-bases $\left(e_{n}\right)_{n}$ and $\left(f_{n}\right)_{n}$ of H, and $\operatorname{Tr}(T):=\sum_{n}\left\langle T e_{n}, e_{n}\right\rangle$ converges absolutely and is independent of the choice of the ON-basis.

Operators on Hilbert spaces

(I) This theorem is not trivial, but not too hard either, I'll make a series of exercises devoted to its proof later on.

Operators on Hilbert spaces

(I) This theorem is not trivial, but not too hard either, I'll make a series of exercises devoted to its proof later on.
(II) Here is a key example of HS operators:

Theorem (Hilbert-Schmidt) If (X, μ) is a measure space such that $H=L^{2}(X, \mu)$ is separable and if $K \in L^{2}(X \times X)$ then the operator $T_{K} \in B(H)$ defined by

$$
T_{K}(f)(x)=\int_{X} K(x, y) f(y) d \mu(y)
$$

is HS .

Operators on Hilbert spaces

(I) The proof is easy: pick an ON-basis $\left(e_{n}\right)$ of H. By Fubini $K(x, \bullet) \in L^{2}(X)$ for almost all x and $T_{K}\left(e_{n}\right)(x)=\left\langle K(x, \bullet), \overline{e_{n}}\right\rangle$, thus (using Plancherel and Fubini, and noting that $\overline{e_{n}}$ also form an ON-basis)

$$
\begin{aligned}
& \sum\left\|T_{K}\left(e_{n}\right)\right\|^{2}=\sum \int_{X}\left|\left\langle K(x, \bullet), \overline{e_{n}}\right\rangle\right|^{2} d \mu(x) \\
= & \int_{X}\|K(x, \bullet)\|_{L^{2}(X)}^{2} d \mu(x)=\|K\|_{L^{2}(X \times X)}^{2}<\infty .
\end{aligned}
$$

Operators on Hilbert spaces

(I) The proof is easy: pick an ON-basis $\left(e_{n}\right)$ of H. By Fubini $K(x, \cdot) \in L^{2}(X)$ for almost all x and $T_{K}\left(e_{n}\right)(x)=\left\langle K(x, \bullet), \overline{e_{n}}\right\rangle$, thus (using Plancherel and Fubini, and noting that $\overline{e_{n}}$ also form an ON-basis)

$$
\begin{aligned}
& \sum\left\|T_{K}\left(e_{n}\right)\right\|^{2}=\sum \int_{X} \mid\left\langle K(x, \cdot),\left.\overline{\left.e_{n}\right\rangle}\right|^{2} d \mu(x)\right. \\
= & \int_{X}\|K(x, \cdot)\|_{L^{2}(X)}^{2} d \mu(x)=\|K\|_{L^{2}(X \times X)}^{2}<\infty .
\end{aligned}
$$

(II) As a concrete example, let G be as usual and let Γ be a closed unimodular subgroup in G such that $X=\Gamma \backslash G$ is compact (e.g. 「 is a co-compact lattice). Let $H=L^{2}(X)$ with the natural action of G. For $f \in C_{c}(G)$ let T_{f} be the operator $\varphi \rightarrow f . \varphi=\left(x \rightarrow \int_{G} f(g) \varphi(x g) d g\right)$.

Operators on Hilbert spaces

(I) We compute

$$
\begin{gathered}
T_{f}(\varphi)(x)=\int_{G} f\left(x^{-1} g\right) \varphi(g) d g=\int_{\Gamma \backslash G} \varphi(g)\left(\int_{\Gamma} f\left(x^{-1} \gamma g\right) d \gamma\right) d g \\
=\int_{X} K_{f}(x, y) \varphi(y) d y, \quad K_{f}(x, y)=\int_{\Gamma} f\left(x^{-1} \gamma y\right) d \gamma
\end{gathered}
$$

Operators on Hilbert spaces

(I) We compute

$$
\begin{gathered}
T_{f}(\varphi)(x)=\int_{G} f\left(x^{-1} g\right) \varphi(g) d g=\int_{\Gamma \backslash G} \varphi(g)\left(\int_{\Gamma} f\left(x^{-1} \gamma g\right) d \gamma\right) d g \\
=\int_{X} K_{f}(x, y) \varphi(y) d y, \quad K_{f}(x, y)=\int_{\Gamma} f\left(x^{-1} \gamma y\right) d \gamma
\end{gathered}
$$

(II) Now $K_{f} \in C^{0}(X \times X) \subset L^{2}(X \times X)$ (as X is compact!), thus T_{f} is HS by the above theorem. The next theorem is MUCH deeper:

Theorem (Dixmier-Malliavin) If G is moreover a real Lie group, then $T_{f} \in T C\left(L^{2}(\Gamma \backslash G)\right)$ for all $f \in C_{c}^{\infty}(G)$ and

$$
\operatorname{Tr}\left(T_{f}\right)=\int_{X} K_{f}(x, x) d x
$$

Operators on Hilbert spaces

(I) This follows from an amazing theorem of Dixmier-Malliavin, saying that any $f \in C_{c}^{\infty}(G)$ is a finite sum of functions of the form $f_{1} * f_{2}$ with $f_{i} \in C_{c}^{\infty}(G)$. Now $T_{f_{1} * f_{2}}=T_{f_{1}} T_{f_{2}}$ and $T_{f_{i}} \in H S$, thus $T_{f_{1} * f_{2}} \in T C$ and $T_{f} \in T C$. The computation of the trace for $f=f_{1} * f_{2}$ is a simple computation (exercise) with ON -bases and the general case follows.

Operators on Hilbert spaces

(I) This follows from an amazing theorem of Dixmier-Malliavin, saying that any $f \in C_{c}^{\infty}(G)$ is a finite sum of functions of the form $f_{1} * f_{2}$ with $f_{i} \in C_{c}^{\infty}(G)$. Now $T_{f_{1} * f_{2}}=T_{f_{1}} T_{f_{2}}$ and $T_{f_{i}} \in H S$, thus $T_{f_{1} * f_{2}} \in T C$ and $T_{f} \in T C$. The computation of the trace for $f=f_{1} * f_{2}$ is a simple computation (exercise) with ON -bases and the general case follows.
(II) We will now move on to applications of these very general results to representation theory.

Application 1: Schur's lemma

(I) The following result is fundamental (and the proof is much subtler than for finite groups!). Keep a general G for now (so locally compact, unimodular, countable at infinity):

Theorem (Schur's lemma) For any $V \in \hat{G}$ we have End $_{G}(V)=\mathbb{C}$, i.e. all G-equivariant endomorphisms are scalar.

Application 1: Schur's lemma

(I) The following result is fundamental (and the proof is much subtler than for finite groups!). Keep a general G for now (so locally compact, unimodular, countable at infinity):

Theorem (Schur's lemma) For any $V \in \hat{G}$ we have $\operatorname{End}_{G}(V)=\mathbb{C}$, i.e. all G-equivariant endomorphisms are scalar.
(II) Let $A=\operatorname{End}_{G}(V)$, a closed \mathbb{C}-subalgebra of $B(H)$, stable by passage to adjoints (by unitarity of V). If $T \in A$, then $T=\frac{T+T^{*}}{2}+i \cdot \frac{T-T^{*}}{2 i}$ and $\frac{T+T^{*}}{2}, \frac{T-T^{*}}{2 i}$ are self-adjoint, so it suffices to prove that any self-adjoint $T \in A$ is scalar, i.e. that its spectrum $K=\sigma(T)$ has one point (as then $T-\lambda$ is self-adjoint and $\sigma(T-\lambda)=\{0\}$, thus $T=\lambda$).

Application 1: Schur's lemma

(I) The following result is fundamental (and the proof is much subtler than for finite groups!). Keep a general G for now (so locally compact, unimodular, countable at infinity):

Theorem (Schur's lemma) For any $V \in \hat{G}$ we have $\operatorname{End}_{G}(V)=\mathbb{C}$, i.e. all G-equivariant endomorphisms are scalar.
(II) Let $A=\operatorname{End}_{G}(V)$, a closed \mathbb{C}-subalgebra of $B(H)$, stable by passage to adjoints (by unitarity of V). If $T \in A$, then $T=\frac{T+T^{*}}{2}+i \cdot \frac{T-T^{*}}{2 i}$ and $\frac{T+T^{*}}{2}, \frac{T-T^{*}}{2 i}$ are self-adjoint, so it suffices to prove that any self-adjoint $T \in A$ is scalar, i.e. that its spectrum $K=\sigma(T)$ has one point (as then $T-\lambda$ is self-adjoint and $\sigma(T-\lambda)=\{0\}$, thus $T=\lambda$).
(III) If $|K| \geq 2$, one easily shows that there are $f, g \in C(K)$ nonzero such that $f g=0$.

Schur's lemma for unitary representations

(I) Note that $f(T) \in A$ for $f \in C(K)$ (since $f(T)$ is a limit of polynomials in T and A is closed in $B(H)$). Also $f(T) g(T)=(f g)(T)=0$. If $f(T), g(T) \neq 0$, then $\operatorname{ker}(f(T))$ is a sub-representation of V different from 0 and V, contradicting the irreductibility of V. So WLOG $f(T)=0$. But then $f=0$, since $T \rightarrow f(T)$ is an isometry, a contradiction.

Discrete decompositions

(I) Let H_{1}, H_{2}, \ldots be separable Hilbert spaces. Their Hilbert sum $H=\widehat{\oplus}_{n} H_{n}$ is the Hilbert space obtained by completing $\oplus_{n} H_{n}$ with respect to the hermitian product

$$
\left\langle\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\right\rangle=\sum_{n}\left\langle x_{n}, y_{n}\right\rangle .
$$

Concretely, H is the space of sequences $\left(x_{n}\right)_{n}$ with $x_{n} \in H_{n}$ and $\sum_{n}\left\|x_{n}\right\|^{2}<\infty$ (with the hermitian product above).

Discrete decompositions

(I) Let H_{1}, H_{2}, \ldots be separable Hilbert spaces. Their Hilbert sum $H=\widehat{\oplus}_{n} H_{n}$ is the Hilbert space obtained by completing $\oplus_{n} H_{n}$ with respect to the hermitian product

$$
\left\langle\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\right\rangle=\sum_{n}\left\langle x_{n}, y_{n}\right\rangle .
$$

Concretely, H is the space of sequences $\left(x_{n}\right)_{n}$ with $x_{n} \in H_{n}$ and $\sum_{n}\left\|x_{n}\right\|^{2}<\infty$ (with the hermitian product above).
(II) If H_{n} are unitary representations of some G, then so is $H=\widehat{\oplus}_{n} H_{n}$ (via $\left.g \cdot\left(x_{n}\right)_{n}=\left(g \cdot x_{n}\right)_{n}\right)$.

Discrete decompositions

(I) Let H_{1}, H_{2}, \ldots be separable Hilbert spaces. Their Hilbert sum $H=\widehat{\oplus}_{n} H_{n}$ is the Hilbert space obtained by completing $\oplus_{n} H_{n}$ with respect to the hermitian product

$$
\left\langle\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\right\rangle=\sum_{n}\left\langle x_{n}, y_{n}\right\rangle .
$$

Concretely, H is the space of sequences $\left(x_{n}\right)_{n}$ with $x_{n} \in H_{n}$ and $\sum_{n}\left\|x_{n}\right\|^{2}<\infty$ (with the hermitian product above).
(II) If H_{n} are unitary representations of some G, then so is $H=\widehat{\oplus}_{n} H_{n}$ (via $\left.g \cdot\left(x_{n}\right)_{n}=\left(g \cdot x_{n}\right)_{n}\right)$.
(III) We say that a unitary representation H of G has a discrete decomposition if there are irreducible unitary sub-representations H_{n} with $H=\widehat{\oplus}_{n} H_{n}$ and each occurs with finite multiplicity, i.e. any $\pi \in \hat{G}$ is isomorphic to only finitely many H_{n}.

Discrete decompositions

(I) Equivalently (use Schur's lemma) a unitary rep. H has discrete decomposition if we can write

$$
H \simeq \widehat{\bigoplus}_{\pi \in \hat{G}} \pi^{\oplus m(\pi)} \simeq \widehat{\bigoplus}_{\pi \in \hat{G}} \pi \otimes \operatorname{Hom}_{G}(\pi, H)
$$

with $m(\pi)=\operatorname{dim} \operatorname{Hom}_{G}(\pi, H)<\infty$. The following theorem is fundamental:

Theorem (Gelfand-Graev, Piatetski-Shapiro) If H is a unitary representation of G such that T_{f} is a compact operator on H for all $f \in C_{c}(G)$, then H has a discrete decomposition.

If G is a real Lie group, it suffices to impose the condition for $f \in C_{c}^{\infty}(G)$ (as the proof shows).

Discrete decompositions

(I) The main step is showing that any nonzero sub-representation W contains an irreducible sub-representation. For this, we start by picking (use Dirac sequences) $f \in C_{c}(G)$ such that $T:=\left.T_{f}\right|_{W}$ is nonzero and self-adjoint. As T is also compact, it has a nonzero eigenvalue λ. Among stable subspaces V of W for which $V[\lambda]:=\operatorname{ker}(T-\lambda)$ is nonzero, pick one that minimises $\operatorname{dim} V[\lambda]$, and pick $v \in V[\lambda]$ nonzero.

Discrete decompositions

(I) The main step is showing that any nonzero sub-representation W contains an irreducible sub-representation. For this, we start by picking (use Dirac sequences) $f \in C_{c}(G)$ such that $T:=T_{f} \mid w$ is nonzero and self-adjoint. As T is also compact, it has a nonzero eigenvalue λ. Among stable subspaces V of W for which $V[\lambda]:=\operatorname{ker}(T-\lambda)$ is nonzero, pick one that minimises $\operatorname{dim} V[\lambda]$, and pick $v \in V[\lambda]$ nonzero.
(II) We claim that $V_{1}=\overline{\operatorname{Span}(G . v)}$ is irreducible. If not, $V_{1}=U_{1} \oplus U_{2}$, orthogonal sum of nonzero sub-representations. Then U_{i} are stable under T and $V_{1}[\lambda]=U_{1}[\lambda] \oplus U_{2}[\lambda]$. By minimality of V one of $U_{i}[\lambda]$ is 0 so WLOG $v \in U_{1}$, but then $V_{1} \subset U_{1}$ and $U_{2}=0$, a contradiction.

Discrete decompositions

(I) Next we show that H is a Hilbert direct sum of irreducible sub-representations. A set of irreducible and pairwise orthogonal sub-reps. of H is called an orthogonal family. One easily checks (use Zorn's lemma) that there is a maximal orthogonal family A. The orthogonal W of $\sum_{\pi \in A} \pi$ (equivalently of $\hat{\oplus}_{\pi \in A} \pi$) is a sub-representation containing no irreducible sub-representation (by maximality of A), thus by the first step $W=0$ and $H=\hat{\oplus}_{\pi \in A} \pi$.

Discrete decompositions

(I) Next we show that H is a Hilbert direct sum of irreducible sub-representations. A set of irreducible and pairwise orthogonal sub-reps. of H is called an orthogonal family. One easily checks (use Zorn's lemma) that there is a maximal orthogonal family A. The orthogonal W of $\sum_{\pi \in A} \pi$ (equivalently of $\hat{\oplus}_{\pi \in A} \pi$) is a sub-representation containing no irreducible sub-representation (by maximality of A), thus by the first step $W=0$ and $H=\hat{\oplus}_{\pi \in A} \pi$.
(II) Finally, we check that multiplicities are finite. Say π_{1}, \ldots, π_{n} are irreducible, pairwise isomorphic, and all appear in H. Pick $f \in C_{c}(G)$ such that T_{f} is self-adjoint and nonzero on π_{1}, and pick a nonzero eigenvalue λ of T_{f} on π_{1}. The eigenspaces $\pi_{i}[\lambda]$ are all isomorphic to $\pi_{1}[\lambda]$ (as $\pi_{i} \simeq \pi_{1}$), in particular nonzero, and are in direct sum inside $H[\lambda]$, thus $n \leq \operatorname{dim} H[\lambda]<\infty$ (as T_{f} is compact).

Discrete decompositions

(I) Combining the previous results, we obtain:

Theorem (GGPS)
Let G be a unimodular, locally compact group and let Γ a unimodular closed subgroup (e.g. a lattice) such that $X:=\Gamma \backslash G$ is compact. Then $L^{2}(X)$ with the natural unitary action of G (by right translation) has a discrete decomposition.

Indeed, we have already seen that T_{f} is HS on $L^{2}(X)$, thus compact, so the previous theorem applies.

Application 3: compact groups, Peter-Weyl theory

(I) Consider a compact group K. Let $d k$ be the unique Haar measure with $\int_{K} d k=1$.

Theorem Any finite dimensional $V \in \operatorname{Rep}(K)$ has a structure of unitary representation of K, and V is a direct sum of irreducible representations.

Pick any hermitian product $\langle.,$.$\rangle on V$ and define

$$
(v, w)=\int_{K}\langle k \cdot v, k \cdot w\rangle d k,
$$

a K-invariant hermitian product making V unitary. For the second part, if V is irreducible, we are done, otherwise pick a sub-representation $W \neq V$. Then W^{\perp} is K-stable and $V=W \oplus W^{\perp}$, so we are done by induction on $\operatorname{dim} V$.

Application 3: compact groups, Peter-Weyl theory

(I) The following theorem is classical for finite groups:

Theorem (Schur's orthogonality relations)
a) Any $V \in \hat{K}$ is finite dimensional.
b) Let $U, V \in \hat{K}$ and let $a_{1}, a_{2} \in U$ and $b_{1}, b_{2} \in V$. Then

$$
\int_{K}\left\langle k \cdot a_{1}, a_{2}\right\rangle \overline{\left\langle k \cdot b_{1}, b_{2}\right\rangle} d k
$$

is 0 when $U \neq V$ and equal to $\frac{\left\langle a_{1}, b_{1}\right\rangle\left\langle\left\langle a_{2}, b_{2}\right\rangle\right.}{\operatorname{dim} V}$ when $U=V$.

Application 3: compact groups, Peter-Weyl theory
(I) The proof is based on Schur's lemma and follows the proof for finite groups, with some twists.

Application 3: compact groups, Peter-Weyl theory
(I) The proof is based on Schur's lemma and follows the proof for finite groups, with some twists.
(II) Let $V \in \hat{K}$. First we prove that there is $d>0$ such that for all $u, v \in V$ we have

$$
\int_{K}|\langle k \cdot v, w\rangle|^{2}=\frac{\|v\|^{2} \cdot\|w\|^{2}}{d} .
$$

Application 3: compact groups, Peter-Weyl theory
(I) The proof is based on Schur's lemma and follows the proof for finite groups, with some twists.
(II) Let $V \in \hat{K}$. First we prove that there is $d>0$ such that for all $u, v \in V$ we have

$$
\int_{K}|\langle k \cdot v, w\rangle|^{2}=\frac{\|v\|^{2} \cdot\|w\|^{2}}{d}
$$

(III) Fix $v_{0} \in V$ nonzero. The K-invariant hermitian product

$$
(v, w)=\int_{K}\left\langle k \cdot v, v_{0}\right\rangle \overline{\left\langle k \cdot w, v_{0}\right\rangle} d k
$$

is continuous (Cauchy-Schwarz), thus it is given by $\langle A v, w\rangle$ for some $A \in \operatorname{End}_{G}(V)=\mathbb{C}$ (Schur's lemma). Thus there is $\alpha\left(v_{0}\right)>0$ such that

$$
\int_{K}\left|\left\langle k \cdot v, v_{0}\right\rangle\right|^{2} d k=\alpha\left(v_{0}\right)\|v\|^{2}, \quad \forall v
$$

Application 3: compact groups, Peter-Weyl theory
(I) But
$\int_{K}\left|\left\langle k \cdot v, v_{0}\right\rangle\right|^{2} d k=\int_{K}\left|\left\langle v, k^{-1} \cdot v_{0}\right\rangle\right|^{2} d k=\int_{K}\left|\left\langle k \cdot v_{0}, v\right\rangle\right|^{2} d k$.
Comparing these formulae yields $\alpha(v)=\|v\|^{2} / d$ for some constant $d>0$ and proves the first claim.

Application 3: compact groups, Peter-Weyl theory
(I) But
$\int_{K}\left|\left\langle k \cdot v, v_{0}\right\rangle\right|^{2} d k=\int_{K}\left|\left\langle v, k^{-1} \cdot v_{0}\right\rangle\right|^{2} d k=\int_{K}\left|\left\langle k \cdot v_{0}, v\right\rangle\right|^{2} d k$.
Comparing these formulae yields $\alpha(v)=\|v\|^{2} / d$ for some constant $d>0$ and proves the first claim.
(II) Next we prove that $\operatorname{dim} V<\infty$ and $d=\operatorname{dim} V$. If e_{1}, \ldots, e_{n} is any orthonormal family (not basis a priori!) of V, then

$$
\begin{aligned}
& \sum_{i}\left|\left\langle k \cdot v, e_{i}\right\rangle\right|^{2} \leq\|k \cdot v\|^{2}=\|v\|^{2} \text { for all } v \text {, thus } \\
& n\|v\|^{2} / d=\int_{K}\left(\sum_{i}\left|\left\langle k \cdot v, e_{i}\right\rangle\right|^{2}\right) d k \leq \int_{K}\|v\|^{2} d k=\|v\|^{2} .
\end{aligned}
$$

Application 3: compact groups, Peter-Weyl theory
(I) But

$$
\int_{K}\left|\left\langle k \cdot v, v_{0}\right\rangle\right|^{2} d k=\int_{K}\left|\left\langle v, k^{-1} \cdot v_{0}\right\rangle\right|^{2} d k=\int_{K}\left|\left\langle k \cdot v_{0}, v\right\rangle\right|^{2} d k
$$

Comparing these formulae yields $\alpha(v)=\|v\|^{2} / d$ for some constant $d>0$ and proves the first claim.
(II) Next we prove that $\operatorname{dim} V<\infty$ and $d=\operatorname{dim} V$. If e_{1}, \ldots, e_{n} is any orthonormal family (not basis a priori!) of V, then

$$
\begin{aligned}
& \sum_{i}\left|\left\langle k \cdot v, e_{i}\right\rangle\right|^{2} \leq\|k \cdot v\|^{2}=\|v\|^{2} \text { for all } v \text {, thus } \\
& n\|v\|^{2} / d=\int_{K}\left(\sum_{i}\left|\left\langle k \cdot v, e_{i}\right\rangle\right|^{2}\right) d k \leq \int_{K}\|v\|^{2} d k=\|v\|^{2} .
\end{aligned}
$$

(III) Thus $\operatorname{dim} V<\infty$. But then we can choose the e_{i} an ON-basis of V and then $\sum_{i}\left|\left\langle k . v, e_{i}\right\rangle\right|^{2}=\|k . v\|^{2}=\|v\|^{2}$ for all v. The same computation shows that $n=d$. This finishes the proof for $U=V$.

Application 3: compact groups, Peter-Weyl theory

(I) Suppose now that $U \neq V$. Using the previous results and Cauchy-Schwarz, we deduce that the K-invariant hermitian form

$$
B(u, v)=\int_{K}\left\langle k \cdot u, a_{2}\right\rangle \overline{\left\langle k \cdot v, b_{2}\right\rangle} d k
$$

is continuous, thus given by $\langle A(u), v\rangle$ for some $A \in \operatorname{Hom}_{K}(U, V)$. The latter space is 0 , so we are done.

Application 3: compact groups, Peter-Weyl theory

(I) Suppose now that $U \neq V$. Using the previous results and Cauchy-Schwarz, we deduce that the K-invariant hermitian form

$$
B(u, v)=\int_{K}\left\langle k \cdot u, a_{2}\right\rangle \overline{\left\langle k \cdot v, b_{2}\right\rangle} d k
$$

is continuous, thus given by $\langle A(u), v\rangle$ for some $A \in \operatorname{Hom}_{K}(U, V)$. The latter space is 0 , so we are done.
(II) By the previous theorem we can define the character $\chi_{\pi} \in C(K)$ of $\pi \in \hat{K}$, with $\chi_{\pi}(k)$ the trace of the endomorphism $v \rightarrow k . v$. Define

$$
e_{\pi}=\operatorname{dim}(\pi) \overline{\chi_{\pi}} \in C(K)
$$

Application 3: compact groups, Peter-Weyl theory

(I) For $\pi \in \hat{K}$ and $V \in \operatorname{Rep}(K)$ we can define a continuous linear map

$$
T_{\pi}: V \rightarrow V, v \rightarrow e_{\pi} \cdot v=\int_{K} e_{\pi}(k) k \cdot v d k
$$

If V is a unitary rep. of K, then T_{π} is a self-adjoint operator on V, since $\overline{e_{\pi}\left(g^{-1}\right)}=e_{\pi}(g)$ (because, by compactness, the eigenvalues of $v \rightarrow k . v$ are on the unit circle). We can re-interpret (exercise) the orthogonality relations as follows:

Theorem a) For $\pi \neq \sigma \in \hat{K}$ we have $e_{\pi} * e_{\pi}=e_{\pi}$ and $e_{\pi} * e_{\sigma}=0$. The operator T_{π} acts by identity on π and by 0 on any other $\sigma \in \hat{K}$.
b) For any $V \in \operatorname{Rep}(G)$, the operator T_{π} is a projection onto its image $V(\pi)$, called the π-isotypic component of V. If V is unitary, T_{π} is an orthogonal projection.

Application 3: compact groups, Peter-Weyl theory

(I) Consider now $H=L^{2}(K)$, with the action of K by left translation $g . f(x)=f\left(g^{-1} x\right)$. Then

$$
T_{f}(\varphi)=f * \varphi, \quad f \in C(K), \varphi \in L^{2}(K) .
$$

Theorem (Peter-Weyl)
a) We have canonical isomorphisms $L^{2}(K)(\pi) \simeq \pi \otimes \pi^{*}$ for $\pi \in \hat{K}$ and $f=\sum_{\pi \in \hat{K}} e_{\pi} * f$ for $f \in L^{2}(K)$.
b) There is a canonical isomorphism of
$K \times K$-representations

$$
L^{2}(K) \simeq \widehat{\bigoplus_{\pi \in \hat{K}}} \pi \otimes \pi^{*}
$$

Application 3: compact groups, Peter-Weyl theory

(I) By GGPS we have a discrete decomposition

$$
L^{2}(K)=\widehat{\bigoplus_{\pi \in \hat{K}}} X_{\pi} \otimes \pi
$$

with $X_{\pi}=\operatorname{Hom}_{K}\left(\pi, L^{2}(K)\right)$ and $\operatorname{dim} X_{\pi}<\infty$.

Application 3: compact groups, Peter-Weyl theory

(I) By GGPS we have a discrete decomposition

$$
L^{2}(K)=\widehat{\bigoplus_{\pi \in \hat{K}}} X_{\pi} \otimes \pi
$$

with $X_{\pi}=\operatorname{Hom}_{K}\left(\pi, L^{2}(K)\right)$ and $\operatorname{dim} X_{\pi}<\infty$.
(II) Also T_{π} acts by identity on $X_{\pi} \otimes \pi$ and by 0 on the other summands, so $L^{2}(K)(\pi)=\operatorname{Im}\left(T_{\pi}\right)=X_{\pi} \otimes \pi$. It suffices therefore to prove that $X_{\pi} \simeq \pi^{*}$.

Application 3: compact groups, Peter-Weyl theory

(I) By GGPS we have a discrete decomposition

$$
L^{2}(K)=\widehat{\bigoplus_{\pi \in \hat{K}}} X_{\pi} \otimes \pi
$$

with $X_{\pi}=\operatorname{Hom}_{K}\left(\pi, L^{2}(K)\right)$ and $\operatorname{dim} X_{\pi}<\infty$.
(II) Also T_{π} acts by identity on $X_{\pi} \otimes \pi$ and by 0 on the other summands, so $L^{2}(K)(\pi)=\operatorname{Im}\left(T_{\pi}\right)=X_{\pi} \otimes \pi$. It suffices therefore to prove that $X_{\pi} \simeq \pi^{*}$.
(III) We claim that the inclusion $L^{2}(K) \subset C(K)$ induces an isomorphism $X_{\pi} \simeq \operatorname{Hom}_{K}(\pi, C(K))$. The latter is identified with π^{*}, by sending $u \in \operatorname{Hom}_{K}(\pi, C(K))$ to $v \in \pi \mapsto u(v)(1)$ and $I \in \pi^{*}$ to $v \rightarrow(k \rightarrow I(k . v))$
(Frobenius reciprocity).

Application 3: compact groups, Peter-Weyl theory

(I) To prove the claim, pick $\varphi \in X_{\pi}$, we want to prove that $\varphi(\pi) \subset C(K)$. Now $\varphi(\pi)$ is a finite dimensional subspace sub-representation of $L^{2}(K)$. If $f \in \varphi(\pi)$, then $W=\left\{T_{h}(\varphi) \mid h \in C(K)\right\}$ is finite dimensional (contained in $\varphi(\pi)$) and using Dirac sequences we see that $f \in \bar{W}=W$, thus there is $h \in C(K)$ such that $f=T_{h}(f) \in C(K)$.

Theorem (Peter-Weyl) For any $V \in \operatorname{Rep}(K)$ the space V_{K} of K-finite vectors is given by $V_{K}=\sum_{\pi \in \hat{K}} V(\pi)$ and it is dense in V. There are natural isomorphisms

$$
\pi \otimes \operatorname{Hom}_{K}(\pi, V) \simeq V(\pi)
$$

Application 3: compact groups, Peter-Weyl theory
(I) We first prove the inclusion $V_{K} \subset \sum_{\pi} V(\pi)$. If $v \in V_{K}$, then $\operatorname{Span}(K . v)$ is a finite dimensional representation of K, thus a direct sum of irreducible reps. π_{1}, \ldots, π_{n}, and T_{π} acts by identity on π, thus $v \in \sum V\left(\pi_{i}\right)$.

Application 3: compact groups, Peter-Weyl theory

(I) We first prove the inclusion $V_{K} \subset \sum_{\pi} V(\pi)$. If $v \in V_{K}$, then $\operatorname{Span}(K . v)$ is a finite dimensional representation of K, thus a direct sum of irreducible reps. π_{1}, \ldots, π_{n}, and T_{π} acts by identity on π, thus $v \in \sum V\left(\pi_{i}\right)$.
(II) For the rest, the crucial claim is that for $v \in V(\pi)$ $W=\overline{\operatorname{Span}(K . v)} \simeq \pi^{\oplus N}$ for some integer $N \geq 1$. It suffices to check that $\operatorname{dim} W<\infty$, since T_{π} acts by identity on W (and kills any $\sigma \in \hat{K}$ different from π).

Application 3: compact groups, Peter-Weyl theory

(I) We first prove the inclusion $V_{K} \subset \sum_{\pi} V(\pi)$. If $v \in V_{K}$, then $\operatorname{Span}(K . v)$ is a finite dimensional representation of K, thus a direct sum of irreducible reps. π_{1}, \ldots, π_{n}, and T_{π} acts by identity on π, thus $v \in \sum V\left(\pi_{i}\right)$.
(II) For the rest, the crucial claim is that for $v \in V(\pi)$ $W=\overline{\operatorname{Span}(K . v)} \simeq \pi^{\oplus N}$ for some integer $N \geq 1$. It suffices to check that $\operatorname{dim} W<\infty$, since T_{π} acts by identity on W (and kills any $\sigma \in \hat{K}$ different from π).
(III) By Hahn-Banach it suffices to check that $\operatorname{dim} W^{*}<\infty$ (continuous dual). But one easily checks that sending $I \in W^{*}$ to $f_{l}: k \rightarrow I\left(k^{-1} . v\right)$ embeds W^{*} in the finite dimensional space of functions f such that $T_{\pi}(f)=(f)$ (recall that T_{π} is compact!).

Application 3: compact groups, Peter-Weyl theory

(I) Next, we prove that V_{K} is dense in V. If not, pick $I \in V^{*}$ nonzero but vanishing on V_{K}. Fix $v \in V$ and set $\varphi(k)=I\left(k^{-1} . v\right)$, then $\varphi \in C(K)$ and one checks that $e_{\pi} * \varphi=0$ for $\pi \in \hat{K}$, thus by the previous theorem $\varphi=0$ and $I=0$.

Theorem (Peter-Weyl) Any irreducible $V \in \operatorname{Rep}(K)$ is finite dimensional.

Each $V(\pi)$ is 0 or V by irreducibility, and $\sum V(\pi)$ is dense, so for some π we have $V(\pi)=V$. But the previous theorem shows that $V(\pi)$ is a direct sum of copies of π, thus $V \simeq \pi$ and we are done.

Problem set

(I) Let H, H^{\prime} be unitary representations of G (with the usual hypotheses on G), with H irreducible. Prove that any $T \in \operatorname{Hom}_{G}\left(H, H^{\prime}\right)$ has closed image and induces an isomorphism between H and a sub-representation of H^{\prime}. Hint: use Schur's lemma.

Problem set

(I) Let H, H^{\prime} be unitary representations of G (with the usual hypotheses on G), with H irreducible. Prove that any $T \in \operatorname{Hom}_{G}\left(H, H^{\prime}\right)$ has closed image and induces an isomorphism between H and a sub-representation of H^{\prime}. Hint: use Schur's lemma.
(II) Let H, H^{\prime} be unitary representations of G such that $H \simeq H^{\prime}$ in $\operatorname{Rep}(G)$. Prove that there is an isomorphism $U \in \operatorname{Hom}_{G}\left(H, H^{\prime}\right)$ such that $\|U(h)\|=\|h\|$ for all $h \in H$.

Problem set

(I) Let H, H^{\prime} be unitary representations of G (with the usual hypotheses on G), with H irreducible. Prove that any $T \in \operatorname{Hom}_{G}\left(H, H^{\prime}\right)$ has closed image and induces an isomorphism between H and a sub-representation of H^{\prime}. Hint: use Schur's lemma.
(II) Let H, H^{\prime} be unitary representations of G such that $H \simeq H^{\prime}$ in $\operatorname{Rep}(G)$. Prove that there is an isomorphism $U \in \operatorname{Hom}_{G}\left(H, H^{\prime}\right)$ such that $\|U(h)\|=\|h\|$ for all $h \in H$.
(III) Prove that the characters φ_{π} of elements $\pi \in \hat{K}$ form an ON-basis of $L^{2}(K)$. Also, a finite dimensional representation V of K is irreducible if and only if $\left\langle\chi v, \chi_{v}\right\rangle=1$.

Problem set

(I) In the next exercises H is a separable Hilbert space and we use the notations $B(H), H S(H), T C(H)$, etc as in the lecture.

Problem set

(I) In the next exercises H is a separable Hilbert space and we use the notations $B(H), H S(H), T C(H)$, etc as in the lecture.
(II) Let $T \in H S(H)$ and let $\left(e_{n}\right)$ and $\left(f_{n}\right)_{n}$ be an ON-bases of H. Using the Plancherel formula twice, prove that $\sum_{n}\left\|T\left(e_{n}\right)\right\|^{2}=\sum_{n}\left\|T^{*}\left(f_{n}\right)\right\|^{2}$. Deduce that $T^{*} \in H S(H)$ and that $\sum_{n}\left\|T\left(e_{n}\right)\right\|^{2}$ is independent of the ON-basis $\left(e_{n}\right)_{n}$.

Problem set

(I) In the next exercises H is a separable Hilbert space and we use the notations $B(H), H S(H), T C(H)$, etc as in the lecture.
(II) Let $T \in H S(H)$ and let $\left(e_{n}\right)$ and $\left(f_{n}\right)_{n}$ be an ON-bases of H. Using the Plancherel formula twice, prove that $\sum_{n}\left\|T\left(e_{n}\right)\right\|^{2}=\sum_{n}\left\|T^{*}\left(f_{n}\right)\right\|^{2}$. Deduce that $T^{*} \in H S(H)$ and that $\sum_{n}\left\|T\left(e_{n}\right)\right\|^{2}$ is independent of the ON-basis $\left(e_{n}\right)_{n}$.
(III) Prove that any $T \in H S(H)$ is compact. Hint: pick an ON-basis (e_{n}) and consider the operators $T_{n}(v)=\sum_{k \leq n}\left\langle v, e_{k}\right\rangle T\left(e_{k}\right)$.

Problem set

(I) Let $T \in B(H)$ and $S \in H S(H)$.
a) Prove that $T S, S T \in H S(H)$.
b) If $T \in H S(H)$, prove that $T S, S T \in T C(H)$.

Problem set

(II) In this exercise we will prove that any $T \in T C(H)$ can be written $T=A B$ with $A, B \in H S(H)$.
a) Explain why T is compact and why $\operatorname{ker}\left(T^{*} T\right)=\operatorname{ker}(T)$. Deduce that $\operatorname{ker}(T)^{\perp}$ has an ON-basis $\left(v_{n}\right)_{n}$ such that $T^{*} T v_{n}=\lambda_{n} v_{n}$ for some $\lambda_{n}>0$ tending to 0 .
b) Define operators S, U by setting them equal to 0 on $\operatorname{ker}(T)$ and asking that $S v_{n}=\sqrt[4]{\lambda_{n}} v_{n}$ and $U v_{n}=\frac{1}{\sqrt{\lambda_{n}}} v_{n}$. Prove that $T=U S^{2}$ and that $\|U v\|=\|v\|$ for $v \in \operatorname{ker}(T)^{\perp}$.
c) Let $\left(e_{n}\right)$ be an ON-basis of H such that $\sum\left\|T e_{n}\right\|<\infty$. Prove that $\left\|T e_{n}\right\| \geq\left\|S e_{n}\right\|^{2}$ (use Cauchy-Schwarz) and deduce that $S, U \in H S(H)$. Conclude.

Problem set

(I) Let $T \in T C(H)$ and let $\left(e_{n}\right)_{n}$ and $\left(f_{n}\right)_{n}$ be two ON-bases of H.
a) Prove that

$$
\sum_{k}\left|\left\langle T e_{n}, f_{k}\right\rangle\left\langle f_{k}, e_{n}\right\rangle\right| \leq\left\|T e_{n}\right\|
$$

and deduce that $\sum_{n, k}\left|\left\langle T e_{n}, f_{k}\right\rangle\left\langle f_{k}, e_{n}\right\rangle\right|<\infty$.
b) By computing $\sum_{n, k}\left\langle T e_{n}, f_{k}\right\rangle\left\langle f_{k}, e_{n}\right\rangle$ in two different ways, prove that

$$
\sum_{n}\left\langle T e_{n}, e_{n}\right\rangle=\sum_{n}\left\langle T f_{n}, f_{n}\right\rangle
$$

