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Abstract nonsense
(I) Recall the general setup: G is a locally compact (and

countable at infinity), unimodular group (with Haar measure
denoted dg) and Rep(G ) is the category of continuous
representations of G on Fréchet spaces.

(II) The space Cc(G ) has a ring structure via the convolution
product

f1 ∗ f2(x) =

∫
G
f1(xg−1)f2(g)dg .

Theorem Any V ∈ Rep(G ) has a natural structure of
Cc(G )-module, denoted (f , v)→ f .v =

∫
G f (g)g .vdg , such

that for all f ∈ Cc(G ) and any continuous linear form l on V
we have

l(f .v) =

∫
G
f (g)l(g .v)dg .
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Abstract nonsense

(I) I will only discuss the case of Hilbert representations V .
Given f ∈ Cc(G ), the map sending l ∈ V ∗ (topological dual)
to

∫
G f (g)l(g .v)dg is a continuous linear form on V ∗, so by

Riesz’ theorem there is a unique f .v ∈ V such that
l(f .v) =

∫
G f (g)l(g .v)dg for all l ∈ V ∗. One easily checks

that (f1 ∗ f2).v = f1.(f2.v) and (f1 + f2).v = f1.v + f2.v (test
these against arbitrary l ∈ V ∗).

(II) A Dirac sequence on G is a sequence of functions
fn ∈ Cc(G ) such that for all j we have:
• fj(g) ≥ 0, fj(g

−1) = fj(g) for all g and
∫
G fj(g)dg = 1.

• Supp(fj) form a decreasing sequence ”tending to {1}” in
an obvious sense.
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Abstract nonsense
(I) Dirac sequences always exist, and given a compact subgroup

K of G we can choose them such that fn(kgk−1) = fn(g) for
k ∈ K and g ∈ G . If G is a Lie group, we can pick fn
smooth as well.

Theorem If V ∈ Rep(G ), v ∈ V and (fn) is a Dirac
sequence, then limn→∞ fn.v = v .

(II) Suppose that V is a Hilbert representation. Given ε > 0
there is a neighborhood U of 1 such that ||g .v − v || ≤ ε for
g ∈ U. For n large enough we have Supp(fn) ⊂ U and

||fn.v−v || = ||
∫
G
fn(g)(g .v−v)dg || ≤

∫
G
fn(g)||g .v−v ||dg

≤ ε
∫
G
fn = ε.
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Operators on Hilbert spaces
(I) Let H be a separable complex Hilbert space. An operator

on H is a continuous linear map T : H → H. Any operator
T has an adjoint operator T ∗, characterised by
〈Tv ,w〉 = 〈v ,T ∗w〉 for v ,w ∈ H (apply Riesz!).

(II) For instance, if H is a unitary representation of some G , and
if f ∈ Cc(G ), the adjoint of the operator
Tf : H → H, v → f .v =

∫
G f (g)g .vdg is Tf ∗ , where

f ∗(g) = f (g−1) (easy computation).

(III) The space B(H) of operators on H is a Banach algebra for
the norm ||T || = supv 6=0 ||Tv ||/||v ||. The operator
T ∈ B(H) is called self-adjoint if T = T ∗, unitary if
TT ∗ = T ∗T = id (i.e. T is an isometry), positive if
〈Tv , v〉 ≥ 0 for all v (such a T is then self-adjoint) and
finally normal if T commutes with T ∗.
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Operators on Hilbert spaces

(I) The spectrum of T ∈ B(H) is

σ(T ) = {λ ∈ C|λ− T is not invertible }.

By Gelfand’s theory σ(T ) is a compact subset of C and

max
λ∈σ(T )

|λ| = lim
n→∞

||T n||1/n,

the spectral radius of T . If T is normal, then
limn→∞ ||T n||1/n = ||T ||, since ||T 2|| = ||T ||2.

(II) Suppose now that T is self-adjoint and let K = σ(T ). Then
K is compact in R, so (Stone-Weierstrass) any f ∈ C (K ) is
a limit of polynomial functions pn. The operators pn(T )
converge to an operator f (T ) ∈ B(H) (use that for
p ∈ C[T ] is normal, thus ||p(T )|| = maxx∈K |p(x)|). This
yields an isometric morphism of Banach algebras
C (K )→ B(H), f → f (T ) (functional calculus).
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Operators on Hilbert spaces

(I) An operator T ∈ B(H) is called compact if T sends
bounded subsets of H to relatively compact subsets, or
equivalently T is a limit (in B(H)) of operators of finite
rank. The set K (H) of compact operators is closed in B(H)
and forms a two-sided ideal in B(H).

(II) Say now dimH =∞. Then for any compact operator T we
have 0 ∈ σ(T ) and σ(T ) K {0} is at most countable and
consists of eigenvalues of T . The eigenspaces corresponding
to nonzero eigenvalues are finite dimensional. If T is
moreover normal, then ker(T )⊥ has an ON-basis of
eigenvectors, and the corresponding eigenvalues tend to 0.
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Operators on Hilbert spaces

(I) An operator T ∈ B(H) is called Hilbert-Schmidt (or simply
HS), respectively of trace class (or simply TC) if H has an
ON-basis (en)n such that

∑
n ||Ten||2 <∞, respectively∑

n ||Ten|| <∞.

(II) Let HS(H), resp. TC (H) be the sets of HS, resp. trace class
operators on H.

Theorem 1) We have TC (H) = {AB|A,B ∈ HS(H)} and
HS(H) ⊂ K (H) (thus TC (H) ⊂ K (H)).
2) T ∈ B(H) is in TC (H) if and only if

∑
n |〈Ten, fn〉| <∞

for any ON-bases (en)n and (fn)n of H, and
Tr(T ) :=

∑
n〈Ten, en〉 converges absolutely and is

independent of the choice of the ON-basis.
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Operators on Hilbert spaces

(I) This theorem is not trivial, but not too hard either, I’ll make
a series of exercises devoted to its proof later on.

(II) Here is a key example of HS operators:

Theorem (Hilbert-Schmidt) If (X , µ) is a measure space
such that H = L2(X , µ) is separable and if K ∈ L2(X × X )
then the operator TK ∈ B(H) defined by

TK (f )(x) =

∫
X
K (x , y)f (y)dµ(y)

is HS.
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Operators on Hilbert spaces

(I) The proof is easy: pick an ON-basis (en) of H. By Fubini
K (x , •) ∈ L2(X ) for almost all x and
TK (en)(x) = 〈K (x , •), en〉, thus (using Plancherel and
Fubini, and noting that en also form an ON-basis)∑

||TK (en)||2 =
∑∫

X
|〈K (x , •), en〉|2dµ(x)

=

∫
X
||K (x , •)||2L2(X )dµ(x) = ||K ||2L2(X×X ) <∞.

(II) As a concrete example, let G be as usual and let Γ be a
closed unimodular subgroup in G such that X = Γ\G is
compact (e.g. Γ is a co-compact lattice). Let H = L2(X )
with the natural action of G . For f ∈ Cc(G ) let Tf be the
operator ϕ→ f .ϕ = (x →

∫
G f (g)ϕ(xg)dg).
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Operators on Hilbert spaces

(I) We compute

Tf (ϕ)(x) =

∫
G
f (x−1g)ϕ(g)dg =

∫
Γ\G

ϕ(g)(

∫
Γ
f (x−1γg)dγ)dg

=

∫
X
Kf (x , y)ϕ(y)dy , Kf (x , y) =

∫
Γ
f (x−1γy)dγ.

(II) Now Kf ∈ C 0(X × X ) ⊂ L2(X × X ) (as X is compact!),
thus Tf is HS by the above theorem. The next theorem is
MUCH deeper:

Theorem (Dixmier-Malliavin) If G is moreover a real Lie
group, then Tf ∈ TC (L2(Γ\G )) for all f ∈ C∞c (G ) and

Tr(Tf ) =

∫
X
Kf (x , x)dx .
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Operators on Hilbert spaces

(I) This follows from an amazing theorem of Dixmier-Malliavin,
saying that any f ∈ C∞c (G ) is a finite sum of functions of
the form f1 ∗ f2 with fi ∈ C∞c (G ). Now Tf1∗f2 = Tf1Tf2 and
Tfi ∈ HS , thus Tf1∗f2 ∈ TC and Tf ∈ TC . The computation
of the trace for f = f1 ∗ f2 is a simple computation (exercise)
with ON-bases and the general case follows.

(II) We will now move on to applications of these very general
results to representation theory.
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Application 1: Schur’s lemma
(I) The following result is fundamental (and the proof is much

subtler than for finite groups!). Keep a general G for now
(so locally compact, unimodular, countable at infinity):

Theorem (Schur’s lemma) For any V ∈ Ĝ we have
EndG (V ) = C, i.e. all G -equivariant endomorphisms are
scalar.

(II) Let A = EndG (V ), a closed C-subalgebra of B(H), stable by
passage to adjoints (by unitarity of V ). If T ∈ A, then
T = T+T∗

2 + i•T−T
∗

2i and T+T∗

2 , T−T
∗

2i are self-adjoint, so it
suffices to prove that any self-adjoint T ∈ A is scalar, i.e.
that its spectrum K = σ(T ) has one point (as then T − λ is
self-adjoint and σ(T − λ) = {0}, thus T = λ).

(III) If |K | ≥ 2, one easily shows that there are f , g ∈ C (K )
nonzero such that fg = 0.
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Schur’s lemma for unitary representations

(I) Note that f (T ) ∈ A for f ∈ C (K ) (since f (T ) is a limit of
polynomials in T and A is closed in B(H)). Also
f (T )g(T ) = (fg)(T ) = 0. If f (T ), g(T ) 6= 0, then
ker(f (T )) is a sub-representation of V different from 0 and
V , contradicting the irreductibility of V . So WLOG
f (T ) = 0. But then f = 0, since T → f (T ) is an isometry, a
contradiction.



Discrete decompositions

(I) Let H1,H2, ... be separable Hilbert spaces. Their Hilbert
sum H = ⊕̂nHn is the Hilbert space obtained by completing
⊕nHn with respect to the hermitian product

〈(xn)n, (yn)n〉 =
∑
n

〈xn, yn〉.

Concretely, H is the space of sequences (xn)n with xn ∈ Hn

and
∑

n ||xn||2 <∞ (with the hermitian product above).

(II) If Hn are unitary representations of some G , then so is
H = ⊕̂nHn (via g .(xn)n = (g .xn)n).

(III) We say that a unitary representation H of G has a discrete
decomposition if there are irreducible unitary
sub-representations Hn with H = ⊕̂nHn and each occurs
with finite multiplicity, i.e. any π ∈ Ĝ is isomorphic to only
finitely many Hn.
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Discrete decompositions

(I) Equivalently (use Schur’s lemma) a unitary rep. H has
discrete decomposition if we can write

H '
⊕̂

π∈Ĝ
π⊕m(π) '

⊕̂
π∈Ĝ

π ⊗HomG (π,H)

with m(π) = dimHomG (π,H) <∞. The following theorem
is fundamental:

Theorem (Gelfand-Graev, Piatetski-Shapiro) If H is a
unitary representation of G such that Tf is a compact
operator on H for all f ∈ Cc(G ), then H has a discrete
decomposition.

If G is a real Lie group, it suffices to impose the condition
for f ∈ C∞c (G ) (as the proof shows).



Discrete decompositions

(I) The main step is showing that any nonzero
sub-representation W contains an irreducible
sub-representation. For this, we start by picking (use Dirac
sequences) f ∈ Cc(G ) such that T := Tf |W is nonzero and
self-adjoint. As T is also compact, it has a nonzero
eigenvalue λ. Among stable subspaces V of W for which
V [λ] := ker(T − λ) is nonzero, pick one that minimises
dimV [λ], and pick v ∈ V [λ] nonzero.

(II) We claim that V1 = Span(G .v) is irreducible. If not,
V1 = U1 ⊕ U2, orthogonal sum of nonzero
sub-representations. Then Ui are stable under T and
V1[λ] = U1[λ]⊕ U2[λ]. By minimality of V one of Ui [λ] is 0
so WLOG v ∈ U1, but then V1 ⊂ U1 and U2 = 0, a
contradiction.
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V1[λ] = U1[λ]⊕ U2[λ]. By minimality of V one of Ui [λ] is 0
so WLOG v ∈ U1, but then V1 ⊂ U1 and U2 = 0, a
contradiction.



Discrete decompositions

(I) Next we show that H is a Hilbert direct sum of irreducible
sub-representations. A set of irreducible and pairwise
orthogonal sub-reps. of H is called an orthogonal family.
One easily checks (use Zorn’s lemma) that there is a
maximal orthogonal family A. The orthogonal W of

∑
π∈A π

(equivalently of ⊕̂π∈Aπ) is a sub-representation containing
no irreducible sub-representation (by maximality of A), thus
by the first step W = 0 and H = ⊕̂π∈Aπ.

(II) Finally, we check that multiplicities are finite. Say π1, ..., πn
are irreducible, pairwise isomorphic, and all appear in H.
Pick f ∈ Cc(G ) such that Tf is self-adjoint and nonzero on
π1, and pick a nonzero eigenvalue λ of Tf on π1. The
eigenspaces πi [λ] are all isomorphic to π1[λ] (as πi ' π1), in
particular nonzero, and are in direct sum inside H[λ], thus
n ≤ dimH[λ] <∞ (as Tf is compact).
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Discrete decompositions

(I) Combining the previous results, we obtain:

Theorem (GGPS)
Let G be a unimodular, locally compact group and let Γ a
unimodular closed subgroup (e.g. a lattice) such that
X := Γ\G is compact. Then L2(X ) with the natural unitary
action of G (by right translation) has a discrete
decomposition.

Indeed, we have already seen that Tf is HS on L2(X ), thus
compact, so the previous theorem applies.



Application 3: compact groups, Peter-Weyl theory

(I) Consider a compact group K . Let dk be the unique Haar
measure with

∫
K dk = 1.

Theorem Any finite dimensional V ∈ Rep(K ) has a
structure of unitary representation of K , and V is a direct
sum of irreducible representations.

Pick any hermitian product 〈., .〉 on V and define

(v ,w) =

∫
K
〈k .v , k .w〉dk,

a K -invariant hermitian product making V unitary. For the
second part, if V is irreducible, we are done, otherwise pick a
sub-representation W 6= V . Then W⊥ is K -stable and
V = W ⊕W⊥, so we are done by induction on dimV .



Application 3: compact groups, Peter-Weyl theory

(I) The following theorem is classical for finite groups:

Theorem (Schur’s orthogonality relations)
a) Any V ∈ K̂ is finite dimensional.
b) Let U,V ∈ K̂ and let a1, a2 ∈ U and b1, b2 ∈ V . Then∫

K
〈k.a1, a2〉〈k.b1, b2〉dk

is 0 when U 6= V and equal to 〈a1,b1〉〈a2,b2〉
dimV when U = V .



Application 3: compact groups, Peter-Weyl theory
(I) The proof is based on Schur’s lemma and follows the proof

for finite groups, with some twists.

(II) Let V ∈ K̂ . First we prove that there is d > 0 such that for
all u, v ∈ V we have∫

K
|〈k .v ,w〉|2 =

||v ||2•||w ||2

d
.

(III) Fix v0 ∈ V nonzero. The K -invariant hermitian product

(v ,w) =

∫
K
〈k .v , v0〉〈k .w , v0〉dk

is continuous (Cauchy-Schwarz), thus it is given by 〈Av ,w〉
for some A ∈ EndG (V ) = C (Schur’s lemma). Thus there is
α(v0) > 0 such that∫

K
|〈k .v , v0〉|2dk = α(v0)||v ||2, ∀v .
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Application 3: compact groups, Peter-Weyl theory

(I) But∫
K
|〈k.v , v0〉|2dk =

∫
K
|〈v , k−1.v0〉|2dk =

∫
K
|〈k.v0, v〉|2dk.

Comparing these formulae yields α(v) = ||v ||2/d for some
constant d > 0 and proves the first claim.

(II) Next we prove that dimV <∞ and d = dimV . If e1, ..., en
is any orthonormal family (not basis a priori!) of V , then∑

i |〈k .v , ei 〉|2 ≤ ||k .v ||2 = ||v ||2 for all v , thus

n||v ||2/d =

∫
K

(
∑
i

|〈k .v , ei 〉|2)dk ≤
∫
K
||v ||2dk = ||v ||2.

(III) Thus dimV <∞. But then we can choose the ei an
ON-basis of V and then

∑
i |〈k .v , ei 〉|2 = ||k .v ||2 = ||v ||2 for

all v . The same computation shows that n = d . This
finishes the proof for U = V .
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Application 3: compact groups, Peter-Weyl theory

(I) Suppose now that U 6= V . Using the previous results and
Cauchy-Schwarz, we deduce that the K -invariant hermitian
form

B(u, v) =

∫
K
〈k.u, a2〉〈k .v , b2〉dk

is continuous, thus given by 〈A(u), v〉 for some
A ∈ HomK (U,V ). The latter space is 0, so we are done.

(II) By the previous theorem we can define the character
χπ ∈ C (K ) of π ∈ K̂ , with χπ(k) the trace of the
endomorphism v → k .v . Define

eπ = dim(π)χπ ∈ C (K ).
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Application 3: compact groups, Peter-Weyl theory

(I) For π ∈ K̂ and V ∈ Rep(K ) we can define a continuous
linear map

Tπ : V → V , v → eπ.v =

∫
K
eπ(k)k .vdk .

If V is a unitary rep. of K , then Tπ is a self-adjoint operator
on V , since eπ(g−1) = eπ(g) (because, by compactness, the
eigenvalues of v → k .v are on the unit circle). We can
re-interpret (exercise) the orthogonality relations as follows:

Theorem a) For π 6= σ ∈ K̂ we have eπ ∗ eπ = eπ and
eπ ∗ eσ = 0. The operator Tπ acts by identity on π and by 0
on any other σ ∈ K̂ .
b) For any V ∈ Rep(G ), the operator Tπ is a projection
onto its image V (π), called the π-isotypic component of
V . If V is unitary, Tπ is an orthogonal projection.



Application 3: compact groups, Peter-Weyl theory

(I) Consider now H = L2(K ), with the action of K by left
translation g .f (x) = f (g−1x). Then

Tf (ϕ) = f ∗ ϕ, f ∈ C (K ), ϕ ∈ L2(K ).

Theorem (Peter-Weyl)
a) We have canonical isomorphisms L2(K )(π) ' π ⊗ π∗ for
π ∈ K̂ and f =

∑
π∈K̂ eπ ∗ f for f ∈ L2(K ).

b) There is a canonical isomorphism of
K × K -representations

L2(K ) '
⊕̂
π∈K̂

π ⊗ π∗.



Application 3: compact groups, Peter-Weyl theory

(I) By GGPS we have a discrete decomposition

L2(K ) =
⊕̂
π∈K̂

Xπ ⊗ π

with Xπ = HomK (π, L2(K )) and dimXπ <∞.

(II) Also Tπ acts by identity on Xπ ⊗ π and by 0 on the other
summands, so L2(K )(π) = Im(Tπ) = Xπ ⊗ π. It suffices
therefore to prove that Xπ ' π∗.

(III) We claim that the inclusion L2(K ) ⊂ C (K ) induces an
isomorphism Xπ ' HomK (π,C (K )). The latter is identified
with π∗, by sending u ∈ HomK (π,C (K )) to
v ∈ π 7→ u(v)(1) and l ∈ π∗ to v → (k → l(k .v))
(Frobenius reciprocity).



Application 3: compact groups, Peter-Weyl theory

(I) By GGPS we have a discrete decomposition

L2(K ) =
⊕̂
π∈K̂

Xπ ⊗ π

with Xπ = HomK (π, L2(K )) and dimXπ <∞.

(II) Also Tπ acts by identity on Xπ ⊗ π and by 0 on the other
summands, so L2(K )(π) = Im(Tπ) = Xπ ⊗ π. It suffices
therefore to prove that Xπ ' π∗.

(III) We claim that the inclusion L2(K ) ⊂ C (K ) induces an
isomorphism Xπ ' HomK (π,C (K )). The latter is identified
with π∗, by sending u ∈ HomK (π,C (K )) to
v ∈ π 7→ u(v)(1) and l ∈ π∗ to v → (k → l(k .v))
(Frobenius reciprocity).



Application 3: compact groups, Peter-Weyl theory

(I) By GGPS we have a discrete decomposition

L2(K ) =
⊕̂
π∈K̂

Xπ ⊗ π

with Xπ = HomK (π, L2(K )) and dimXπ <∞.

(II) Also Tπ acts by identity on Xπ ⊗ π and by 0 on the other
summands, so L2(K )(π) = Im(Tπ) = Xπ ⊗ π. It suffices
therefore to prove that Xπ ' π∗.

(III) We claim that the inclusion L2(K ) ⊂ C (K ) induces an
isomorphism Xπ ' HomK (π,C (K )). The latter is identified
with π∗, by sending u ∈ HomK (π,C (K )) to
v ∈ π 7→ u(v)(1) and l ∈ π∗ to v → (k → l(k .v))
(Frobenius reciprocity).



Application 3: compact groups, Peter-Weyl theory

(I) To prove the claim, pick ϕ ∈ Xπ, we want to prove that
ϕ(π) ⊂ C (K ). Now ϕ(π) is a finite dimensional subspace
sub-representation of L2(K ). If f ∈ ϕ(π), then
W = {Th(ϕ)| h ∈ C (K )} is finite dimensional (contained in
ϕ(π)) and using Dirac sequences we see that f ∈W = W ,
thus there is h ∈ C (K ) such that f = Th(f ) ∈ C (K ).

Theorem (Peter-Weyl) For any V ∈ Rep(K ) the space VK

of K -finite vectors is given by VK =
∑

π∈K̂ V (π) and it is
dense in V . There are natural isomorphisms

π ⊗HomK (π,V ) ' V (π).



Application 3: compact groups, Peter-Weyl theory

(I) We first prove the inclusion VK ⊂
∑

π V (π). If v ∈ VK , then
Span(K .v) is a finite dimensional representation of K , thus a
direct sum of irreducible reps. π1, ..., πn, and Tπ acts by
identity on π, thus v ∈

∑
V (πi ).

(II) For the rest, the crucial claim is that for v ∈ V (π)
W = Span(K .v) ' π⊕N for some integer N ≥ 1. It suffices
to check that dimW <∞, since Tπ acts by identity on W
(and kills any σ ∈ K̂ different from π).

(III) By Hahn-Banach it suffices to check that dimW ∗ <∞
(continuous dual). But one easily checks that sending
l ∈W ∗ to fl : k → l(k−1.v) embeds W ∗ in the finite
dimensional space of functions f such that Tπ(f ) = (f )
(recall that Tπ is compact!).
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Application 3: compact groups, Peter-Weyl theory

(I) Next, we prove that VK is dense in V . If not, pick l ∈ V ∗

nonzero but vanishing on VK . Fix v ∈ V and set
ϕ(k) = l(k−1.v), then ϕ ∈ C (K ) and one checks that
eπ ∗ ϕ = 0 for π ∈ K̂ , thus by the previous theorem ϕ = 0
and l = 0.

Theorem (Peter-Weyl) Any irreducible V ∈ Rep(K ) is
finite dimensional.

Each V (π) is 0 or V by irreducibility, and
∑

V (π) is dense,
so for some π we have V (π) = V . But the previous theorem
shows that V (π) is a direct sum of copies of π, thus V ' π
and we are done.



Problem set

(I) Let H,H ′ be unitary representations of G (with the usual
hypotheses on G ), with H irreducible. Prove that any
T ∈ HomG (H,H ′) has closed image and induces an
isomorphism between H and a sub-representation of H ′.
Hint: use Schur’s lemma.

(II) Let H,H ′ be unitary representations of G such that H ' H ′

in Rep(G ). Prove that there is an isomorphism
U ∈ HomG (H,H ′) such that ||U(h)|| = ||h|| for all h ∈ H.

(III) Prove that the characters ϕπ of elements π ∈ K̂ form an
ON-basis of L2(K ). Also, a finite dimensional representation
V of K is irreducible if and only if 〈χV , χV 〉 = 1.
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Problem set

(I) In the next exercises H is a separable Hilbert space and we
use the notations B(H),HS(H),TC (H), etc as in the
lecture.

(II) Let T ∈ HS(H) and let (en) and (fn)n be an ON-bases of H.
Using the Plancherel formula twice, prove that∑

n ||T (en)||2 =
∑

n ||T ∗(fn)||2. Deduce that T ∗ ∈ HS(H)
and that

∑
n ||T (en)||2 is independent of the ON-basis (en)n.

(III) Prove that any T ∈ HS(H) is compact. Hint: pick an
ON-basis (en) and consider the operators
Tn(v) =

∑
k≤n〈v , ek〉T (ek).
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Problem set
(I) Let T ∈ B(H) and S ∈ HS(H).

a) Prove that TS , ST ∈ HS(H).
b) If T ∈ HS(H), prove that TS ,ST ∈ TC (H).

(II) In this exercise we will prove that any T ∈ TC (H) can be
written T = AB with A,B ∈ HS(H).

a) Explain why T is compact and why ker(T ∗T ) = ker(T ).
Deduce that ker(T )⊥ has an ON-basis (vn)n such that
T ∗Tvn = λnvn for some λn > 0 tending to 0.

b) Define operators S ,U by setting them equal to 0 on
ker(T ) and asking that Svn = 4

√
λnvn and Uvn = 1√

λn
vn.

Prove that T = US2 and that ||Uv || = ||v || for v ∈ ker(T )⊥.

c) Let (en) be an ON-basis of H such that
∑
||Ten|| <∞.

Prove that ||Ten|| ≥ ||Sen||2 (use Cauchy-Schwarz) and
deduce that S ,U ∈ HS(H). Conclude.
d) Deduce that

∑
||Tfn|| <∞ for any ON-basis (fn)n of H.
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Problem set

(I) Let T ∈ TC (H) and let (en)n and (fn)n be two ON-bases of
H.
a) Prove that ∑

k

|〈Ten, fk〉〈fk , en〉| ≤ ||Ten||

and deduce that
∑

n,k |〈Ten, fk〉〈fk , en〉| <∞.
b) By computing

∑
n,k 〈Ten, fk〉〈fk , en〉 in two different ways,

prove that ∑
n

〈Ten, en〉 =
∑
n

〈Tfn, fn〉.


