Lecture 2: operators on Hilbert spaces and applications

Gabriel Dospinescu

CNRS, ENS Lyon

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recall the general setup: G is a locally compact (and countable at infinity), unimodular group (with Haar measure denoted dg) and Rep(G) is the category of continuous representations of G on Fréchet spaces.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Recall the general setup: G is a locally compact (and countable at infinity), unimodular group (with Haar measure denoted dg) and Rep(G) is the category of continuous representations of G on Fréchet spaces.
- (II) The space $C_c(G)$ has a ring structure via the convolution product

$$f_1 * f_2(x) = \int_G f_1(xg^{-1})f_2(g)dg.$$

Theorem Any $V \in \operatorname{Rep}(G)$ has a natural structure of $C_c(G)$ -module, denoted $(f, v) \to f.v = \int_G f(g)g.vdg$, such that for all $f \in C_c(G)$ and any continuous linear form I on V we have

$$I(f.v) = \int_G f(g)I(g.v)dg.$$

(1) I will only discuss the case of Hilbert representations V. Given $f \in C_c(G)$, the map sending $l \in V^*$ (topological dual) to $\int_G f(g)l(g.v)dg$ is a continuous linear form on V^* , so by Riesz' theorem there is a unique $f.v \in V$ such that $l(f.v) = \int_G f(g)l(g.v)dg$ for all $l \in V^*$. One easily checks that $(f_1 * f_2).v = f_1.(f_2.v)$ and $(f_1 + f_2).v = f_1.v + f_2.v$ (test these against arbitrary $l \in V^*$).

- (1) I will only discuss the case of Hilbert representations V. Given $f \in C_c(G)$, the map sending $l \in V^*$ (topological dual) to $\int_G f(g)l(g.v)dg$ is a continuous linear form on V^* , so by Riesz' theorem there is a unique $f.v \in V$ such that $l(f.v) = \int_G f(g)l(g.v)dg$ for all $l \in V^*$. One easily checks that $(f_1 * f_2).v = f_1.(f_2.v)$ and $(f_1 + f_2).v = f_1.v + f_2.v$ (test these against arbitrary $l \in V^*$).
- (II) A Dirac sequence on G is a sequence of functions f_n ∈ C_c(G) such that for all j we have:
 f_j(g) ≥ 0, f_j(g⁻¹) = f_j(g) for all g and ∫_G f_j(g)dg = 1.
 Supp(f_i) form a decreasing sequence "tending to {1}" in

an obvious sense.

Dirac sequences always exist, and given a compact subgroup K of G we can choose them such that f_n(kgk⁻¹) = f_n(g) for k ∈ K and g ∈ G. If G is a Lie group, we can pick f_n smooth as well.

Theorem If $V \in \text{Rep}(G)$, $v \in V$ and (f_n) is a Dirac sequence, then $\lim_{n\to\infty} f_n \cdot v = v$.

Dirac sequences always exist, and given a compact subgroup K of G we can choose them such that f_n(kgk⁻¹) = f_n(g) for k ∈ K and g ∈ G. If G is a Lie group, we can pick f_n smooth as well.

Theorem If $V \in \text{Rep}(G)$, $v \in V$ and (f_n) is a Dirac sequence, then $\lim_{n\to\infty} f_n \cdot v = v$.

(II) Suppose that V is a Hilbert representation. Given ε > 0 there is a neighborhood U of 1 such that ||g.v - v|| ≤ ε for g ∈ U. For n large enough we have Supp(f_n) ⊂ U and ||f_n,v-v|| = || ∫ f_n(g)(g.v-v)dg|| < ∫ f_n(g)||g.v-v||dg|

$$\begin{aligned} \|v\| &= \|\int_{G} f_{n}(g)(g.v-v)dg\| \leq \int_{G} f_{n}(g)\|g.v-v\|dg \\ &\leq \varepsilon \int_{G} f_{n} = \varepsilon. \end{aligned}$$

Let H be a separable complex Hilbert space. An operator on H is a continuous linear map T : H → H. Any operator T has an adjoint operator T*, characterised by (Tv, w) = (v, T*w) for v, w ∈ H (apply Riesz!).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- (II) For instance, if *H* is a unitary representation of some *G*, and if $f \in C_c(G)$, the adjoint of the operator $T_f : H \to H, v \to f.v = \int_G f(g)g.vdg$ is T_{f^*} , where $f^*(g) = \overline{f(g^{-1})}$ (easy computation).

- (II) For instance, if *H* is a unitary representation of some *G*, and if $f \in C_c(G)$, the adjoint of the operator $T_f : H \to H, v \to f.v = \int_G f(g)g.vdg$ is T_{f^*} , where $f^*(g) = \overline{f(g^{-1})}$ (easy computation).
- (III) The space B(H) of operators on H is a Banach algebra for the norm ||T|| = sup_{v≠0} ||Tv||/||v||. The operator T ∈ B(H) is called self-adjoint if T = T*, unitary if TT* = T*T = id (i.e. T is an isometry), positive if (Tv, v) ≥ 0 for all v (such a T is then self-adjoint) and finally normal if T commutes with T*.

(I) The **spectrum** of $T \in B(H)$ is

 $\sigma(T) = \{\lambda \in \mathbb{C} | \lambda - T \text{ is not invertible } \}.$

By Gelfand's theory $\sigma(\mathcal{T})$ is a compact subset of $\mathbb C$ and

$$\max_{\lambda \in \sigma(T)} |\lambda| = \lim_{n \to \infty} ||T^n||^{1/n},$$

the spectral radius of T. If T is normal, then $\lim_{n\to\infty} ||T^n||^{1/n} = ||T||$, since $||T^2|| = ||T||^2$.

(I) The **spectrum** of $T \in B(H)$ is

 $\sigma(T) = \{\lambda \in \mathbb{C} | \lambda - T \text{ is not invertible } \}.$

By Gelfand's theory $\sigma(\mathcal{T})$ is a compact subset of $\mathbb C$ and

$$\max_{\lambda \in \sigma(T)} |\lambda| = \lim_{n \to \infty} ||T^n||^{1/n},$$

the spectral radius of T. If T is normal, then $\lim_{n\to\infty} ||T^n||^{1/n} = ||T||$, since $||T^2|| = ||T||^2$.

(11) Suppose now that T is self-adjoint and let $K = \sigma(T)$. Then K is compact in \mathbb{R} , so (Stone-Weierstrass) any $f \in C(K)$ is a limit of polynomial functions p_n . The operators $p_n(T)$ converge to an operator $f(T) \in B(H)$ (use that for $p \in \mathbb{C}[T]$ is normal, thus $||p(T)|| = \max_{x \in K} |p(x)|$). This yields an isometric morphism of Banach algebras $C(K) \rightarrow B(H), f \rightarrow f(T)$ (functional calculus).

 An operator T ∈ B(H) is called **compact** if T sends bounded subsets of H to relatively compact subsets, or equivalently T is a limit (in B(H)) of operators of finite rank. The set K(H) of compact operators is closed in B(H) and forms a two-sided ideal in B(H).

- An operator T ∈ B(H) is called **compact** if T sends bounded subsets of H to relatively compact subsets, or equivalently T is a limit (in B(H)) of operators of finite rank. The set K(H) of compact operators is closed in B(H) and forms a two-sided ideal in B(H).
- (II) Say now dim $H = \infty$. Then for any compact operator T we have $0 \in \sigma(T)$ and $\sigma(T) \setminus \{0\}$ is at most countable and consists of eigenvalues of T. The eigenspaces corresponding to nonzero eigenvalues are finite dimensional. If T is moreover normal, then ker $(T)^{\perp}$ has an ON-basis of eigenvectors, and the corresponding eigenvalues tend to 0.

(1) An operator T ∈ B(H) is called Hilbert-Schmidt (or simply HS), respectively of trace class (or simply TC) if H has an ON-basis (e_n)_n such that ∑_n ||Te_n||² < ∞, respectively ∑_n ||Te_n|| < ∞.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- (1) An operator T ∈ B(H) is called Hilbert-Schmidt (or simply HS), respectively of trace class (or simply TC) if H has an ON-basis (e_n)_n such that ∑_n ||Te_n||² < ∞, respectively ∑_n ||Te_n|| < ∞.
- (II) Let HS(H), resp. TC(H) be the sets of HS, resp. trace class operators on H.

Theorem 1) We have $TC(H) = \{AB | A, B \in HS(H)\}$ and $HS(H) \subset K(H)$ (thus $TC(H) \subset K(H)$). 2) $T \in B(H)$ is in TC(H) if and only if $\sum_{n} |\langle Te_n, f_n \rangle| < \infty$ for any ON-bases $(e_n)_n$ and $(f_n)_n$ of H, and $Tr(T) := \sum_n \langle Te_n, e_n \rangle$ converges absolutely and is independent of the choice of the ON-basis.

(I) This theorem is not trivial, but not too hard either, I'll make a series of exercises devoted to its proof later on.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 This theorem is not trivial, but not too hard either, I'll make a series of exercises devoted to its proof later on.

(II) Here is a key example of HS operators:

Theorem (Hilbert-Schmidt) If (X, μ) is a measure space such that $H = L^2(X, \mu)$ is separable and if $K \in L^2(X \times X)$ then the operator $T_K \in B(H)$ defined by

$$T_{K}(f)(x) = \int_{X} K(x, y) f(y) d\mu(y)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is HS.

The proof is easy: pick an ON-basis (e_n) of H. By Fubini K(x, •) ∈ L²(X) for almost all x and T_K(e_n)(x) = ⟨K(x, •), e_n⟩, thus (using Plancherel and Fubini, and noting that e_n also form an ON-basis)

$$\sum ||T_{K}(e_{n})||^{2} = \sum \int_{X} |\langle K(x, \bullet), \overline{e_{n}} \rangle|^{2} d\mu(x)$$
$$= \int_{X} ||K(x, \bullet)||^{2}_{L^{2}(X)} d\mu(x) = ||K||^{2}_{L^{2}(X \times X)} < \infty.$$

The proof is easy: pick an ON-basis (e_n) of H. By Fubini K(x, •) ∈ L²(X) for almost all x and T_K(e_n)(x) = ⟨K(x, •), e_n⟩, thus (using Plancherel and Fubini, and noting that e_n also form an ON-basis)

$$\sum ||T_{\mathcal{K}}(e_n)||^2 = \sum \int_X |\langle \mathcal{K}(x, \bullet), \overline{e_n} \rangle|^2 d\mu(x)$$

$$= \int_{X} ||K(x, \bullet)||^{2}_{L^{2}(X)} d\mu(x) = ||K||^{2}_{L^{2}(X \times X)} < \infty.$$

(II) As a concrete example, let G be as usual and let Γ be a closed unimodular subgroup in G such that $X = \Gamma \setminus G$ is compact (e.g. Γ is a co-compact lattice). Let $H = L^2(X)$ with the natural action of G. For $f \in C_c(G)$ let T_f be the operator $\varphi \to f.\varphi = (x \to \int_G f(g)\varphi(xg)dg)$.

(I) We compute

$$T_{f}(\varphi)(x) = \int_{G} f(x^{-1}g)\varphi(g)dg = \int_{\Gamma \setminus G} \varphi(g)(\int_{\Gamma} f(x^{-1}\gamma g)d\gamma)dg$$
$$= \int_{X} K_{f}(x, y)\varphi(y)dy, \quad K_{f}(x, y) = \int_{\Gamma} f(x^{-1}\gamma y)d\gamma.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(I) We compute

$$T_{f}(\varphi)(x) = \int_{G} f(x^{-1}g)\varphi(g)dg = \int_{\Gamma \setminus G} \varphi(g)(\int_{\Gamma} f(x^{-1}\gamma g)d\gamma)dg$$
$$= \int_{X} K_{f}(x,y)\varphi(y)dy, \quad K_{f}(x,y) = \int_{\Gamma} f(x^{-1}\gamma y)d\gamma.$$
New $K \in C^{0}(X \times X) \subset L^{2}(X \times X)$ (as X is compact!)

(II) Now $K_f \in C^0(X \times X) \subset L^2(X \times X)$ (as X is compact!), thus T_f is HS by the above theorem. The next theorem is MUCH deeper:

Theorem (Dixmier-Malliavin) If G is moreover a real Lie group, then $T_f \in TC(L^2(\Gamma \setminus G))$ for all $f \in C_c^{\infty}(G)$ and

$$\operatorname{Tr}(T_f) = \int_X K_f(x, x) dx.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This follows from an amazing theorem of Dixmier-Malliavin, saying that any f ∈ C_c[∞](G) is a finite sum of functions of the form f₁ * f₂ with f_i ∈ C_c[∞](G). Now T_{f1*f2} = T_{f1}T_{f2} and T_{fi} ∈ HS, thus T_{f1*f2} ∈ TC and T_f ∈ TC. The computation of the trace for f = f₁ * f₂ is a simple computation (exercise) with ON-bases and the general case follows.

- (1) This follows from an amazing theorem of Dixmier-Malliavin, saying that any $f \in C_c^{\infty}(G)$ is a finite sum of functions of the form $f_1 * f_2$ with $f_i \in C_c^{\infty}(G)$. Now $T_{f_1 * f_2} = T_{f_1} T_{f_2}$ and $T_{f_i} \in HS$, thus $T_{f_1 * f_2} \in TC$ and $T_f \in TC$. The computation of the trace for $f = f_1 * f_2$ is a simple computation (exercise) with ON-bases and the general case follows.
- (II) We will now move on to applications of these very general results to representation theory.

Application 1: Schur's lemma

 The following result is fundamental (and the proof is much subtler than for finite groups!). Keep a general G for now (so locally compact, unimodular, countable at infinity):

Theorem (Schur's lemma) For any $V \in \hat{G}$ we have $\operatorname{End}_{G}(V) = \mathbb{C}$, i.e. all *G*-equivariant endomorphisms are scalar.

Application 1: Schur's lemma

 The following result is fundamental (and the proof is much subtler than for finite groups!). Keep a general G for now (so locally compact, unimodular, countable at infinity):

Theorem (Schur's lemma) For any $V \in \hat{G}$ we have $\operatorname{End}_{G}(V) = \mathbb{C}$, i.e. all *G*-equivariant endomorphisms are scalar.

(II) Let $A = \operatorname{End}_{G}(V)$, a closed \mathbb{C} -subalgebra of B(H), stable by passage to adjoints (by unitarity of V). If $T \in A$, then $T = \frac{T+T^{*}}{2} + i \cdot \frac{T-T^{*}}{2i}$ and $\frac{T+T^{*}}{2i}, \frac{T-T^{*}}{2i}$ are self-adjoint, so it suffices to prove that any self-adjoint $T \in A$ is scalar, i.e. that its spectrum $K = \sigma(T)$ has one point (as then $T - \lambda$ is self-adjoint and $\sigma(T - \lambda) = \{0\}$, thus $T = \lambda$).

Application 1: Schur's lemma

 The following result is fundamental (and the proof is much subtler than for finite groups!). Keep a general G for now (so locally compact, unimodular, countable at infinity):

Theorem (Schur's lemma) For any $V \in \hat{G}$ we have $\operatorname{End}_{G}(V) = \mathbb{C}$, i.e. all *G*-equivariant endomorphisms are scalar.

(II) Let $A = \operatorname{End}_{G}(V)$, a closed \mathbb{C} -subalgebra of B(H), stable by passage to adjoints (by unitarity of V). If $T \in A$, then $T = \frac{T+T^{*}}{2} + i \cdot \frac{T-T^{*}}{2i}$ and $\frac{T+T^{*}}{2i}, \frac{T-T^{*}}{2i}$ are self-adjoint, so it suffices to prove that any self-adjoint $T \in A$ is scalar, i.e. that its spectrum $K = \sigma(T)$ has one point (as then $T - \lambda$ is self-adjoint and $\sigma(T - \lambda) = \{0\}$, thus $T = \lambda$).

(III) If $|K| \ge 2$, one easily shows that there are $f, g \in C(K)$ nonzero such that fg = 0.

Schur's lemma for unitary representations

(1) Note that f(T) ∈ A for f ∈ C(K) (since f(T) is a limit of polynomials in T and A is closed in B(H)). Also f(T)g(T) = (fg)(T) = 0. If f(T), g(T) ≠ 0, then ker(f(T)) is a sub-representation of V different from 0 and V, contradicting the irreductibility of V. So WLOG f(T) = 0. But then f = 0, since T → f(T) is an isometry, a contradiction.

(1) Let $H_1, H_2, ...$ be separable Hilbert spaces. Their **Hilbert** sum $H = \bigoplus_n H_n$ is the Hilbert space obtained by completing $\bigoplus_n H_n$ with respect to the hermitian product

$$\langle (x_n)_n, (y_n)_n \rangle = \sum_n \langle x_n, y_n \rangle.$$

Concretely, *H* is the space of sequences $(x_n)_n$ with $x_n \in H_n$ and $\sum_n ||x_n||^2 < \infty$ (with the hermitian product above).

(1) Let $H_1, H_2, ...$ be separable Hilbert spaces. Their **Hilbert** sum $H = \bigoplus_n H_n$ is the Hilbert space obtained by completing $\bigoplus_n H_n$ with respect to the hermitian product

$$\langle (x_n)_n, (y_n)_n \rangle = \sum_n \langle x_n, y_n \rangle.$$

Concretely, *H* is the space of sequences $(x_n)_n$ with $x_n \in H_n$ and $\sum_n ||x_n||^2 < \infty$ (with the hermitian product above).

(II) If H_n are unitary representations of some G, then so is $H = \bigoplus_n H_n$ (via $g.(x_n)_n = (g.x_n)_n$).

(1) Let $H_1, H_2, ...$ be separable Hilbert spaces. Their **Hilbert** sum $H = \bigoplus_n H_n$ is the Hilbert space obtained by completing $\bigoplus_n H_n$ with respect to the hermitian product

$$\langle (x_n)_n, (y_n)_n \rangle = \sum_n \langle x_n, y_n \rangle.$$

Concretely, *H* is the space of sequences $(x_n)_n$ with $x_n \in H_n$ and $\sum_n ||x_n||^2 < \infty$ (with the hermitian product above).

- (II) If H_n are unitary representations of some G, then so is $H = \bigoplus_n H_n$ (via $g.(x_n)_n = (g.x_n)_n$).
- (III) We say that a unitary representation H of G has a **discrete decomposition** if there are irreducible unitary sub-representations H_n with $H = \bigoplus_n H_n$ and each occurs with finite multiplicity, i.e. any $\pi \in \hat{G}$ is isomorphic to only finitely many H_n .

(I) Equivalently (use Schur's lemma) a unitary rep. *H* has discrete decomposition if we can write

$$H \simeq \widehat{\bigoplus}_{\pi \in \widehat{G}} \pi^{\oplus m(\pi)} \simeq \widehat{\bigoplus}_{\pi \in \widehat{G}} \pi \otimes \operatorname{Hom}_{G}(\pi, H)$$

with $m(\pi) = \dim \operatorname{Hom}_{G}(\pi, H) < \infty$. The following theorem is fundamental:

Theorem (Gelfand-Graev, Piatetski-Shapiro) If H is a unitary representation of G such that T_f is a compact operator on H for all $f \in C_c(G)$, then H has a discrete decomposition.

If G is a real Lie group, it suffices to impose the condition for $f \in C_c^{\infty}(G)$ (as the proof shows).

The main step is showing that any nonzero sub-representation W contains an irreducible sub-representation. For this, we start by picking (use Dirac sequences) f ∈ C_c(G) such that T := T_f|_W is nonzero and self-adjoint. As T is also compact, it has a nonzero eigenvalue λ. Among stable subspaces V of W for which V[λ] := ker(T - λ) is nonzero, pick one that minimises dim V[λ], and pick v ∈ V[λ] nonzero.

- The main step is showing that any nonzero sub-representation W contains an irreducible sub-representation. For this, we start by picking (use Dirac sequences) f ∈ C_c(G) such that T := T_f|_W is nonzero and self-adjoint. As T is also compact, it has a nonzero eigenvalue λ. Among stable subspaces V of W for which V[λ] := ker(T λ) is nonzero, pick one that minimises dim V[λ], and pick v ∈ V[λ] nonzero.
- (II) We claim that $V_1 = \overline{\text{Span}(G.v)}$ is irreducible. If not, $V_1 = U_1 \oplus U_2$, orthogonal sum of nonzero sub-representations. Then U_i are stable under T and $V_1[\lambda] = U_1[\lambda] \oplus U_2[\lambda]$. By minimality of V one of $U_i[\lambda]$ is 0 so WLOG $v \in U_1$, but then $V_1 \subset U_1$ and $U_2 = 0$, a contradiction.

Next we show that *H* is a Hilbert direct sum of irreducible sub-representations. A set of irreducible and pairwise orthogonal sub-reps. of *H* is called an orthogonal family. One easily checks (use Zorn's lemma) that there is a maximal orthogonal family *A*. The orthogonal *W* of ∑_{π∈A} π (equivalently of ⊕_{π∈A}π) is a sub-representation containing no irreducible sub-representation (by maximality of *A*), thus by the first step *W* = 0 and *H* = ⊕_{π∈A}π.

- Next we show that *H* is a Hilbert direct sum of irreducible sub-representations. A set of irreducible and pairwise orthogonal sub-reps. of *H* is called an orthogonal family. One easily checks (use Zorn's lemma) that there is a maximal orthogonal family *A*. The orthogonal *W* of ∑_{π∈A}π (equivalently of ⊕_{π∈A}π) is a sub-representation containing no irreducible sub-representation (by maximality of *A*), thus by the first step *W* = 0 and *H* = ⊕_{π∈A}π.
- (II) Finally, we check that multiplicities are finite. Say π₁,..., π_n are irreducible, pairwise isomorphic, and all appear in H. Pick f ∈ C_c(G) such that T_f is self-adjoint and nonzero on π₁, and pick a nonzero eigenvalue λ of T_f on π₁. The eigenspaces π_i[λ] are all isomorphic to π₁[λ] (as π_i ≃ π₁), in particular nonzero, and are in direct sum inside H[λ], thus n ≤ dim H[λ] < ∞ (as T_f is compact).

Discrete decompositions

(I) Combining the previous results, we obtain:

Theorem (GGPS)

Let G be a unimodular, locally compact group and let Γ a unimodular closed subgroup (e.g. a lattice) such that $X := \Gamma \setminus G$ is **compact**. Then $L^2(X)$ with the natural unitary action of G (by right translation) has a discrete decomposition.

Indeed, we have already seen that T_f is HS on $L^2(X)$, thus compact, so the previous theorem applies.

(I) Consider a compact group K. Let dk be the unique Haar measure with $\int_{K} dk = 1$.

Theorem Any finite dimensional $V \in \text{Rep}(K)$ has a structure of unitary representation of K, and V is a direct sum of irreducible representations.

Pick any hermitian product $\langle .,.\rangle$ on V and define

$$(v,w) = \int_{\mathcal{K}} \langle k.v, k.w \rangle dk,$$

a K-invariant hermitian product making V unitary. For the second part, if V is irreducible, we are done, otherwise pick a sub-representation $W \neq V$. Then W^{\perp} is K-stable and $V = W \oplus W^{\perp}$, so we are done by induction on dim V.

(I) The following theorem is classical for finite groups:

Theorem (Schur's orthogonality relations) a) Any $V \in \hat{K}$ is finite dimensional. b) Let $U, V \in \hat{K}$ and let $a_1, a_2 \in U$ and $b_1, b_2 \in V$. Then $\int_{K} \langle k.a_1, a_2 \rangle \overline{\langle k.b_1, b_2 \rangle} dk$

is 0 when
$$U
eq V$$
 and equal to $rac{\langle a_1,b_1
angle \overline{\langle a_2,b_2
angle}}{\dim V}$ when $U=V$.

(I) The proof is based on Schur's lemma and follows the proof for finite groups, with some twists.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

- (I) The proof is based on Schur's lemma and follows the proof for finite groups, with some twists.
- (II) Let $V \in \hat{K}$. First we prove that there is d > 0 such that for all $u, v \in V$ we have

$$\int_{\mathcal{K}} |\langle k.v, w \rangle|^2 = \frac{||v||^2 \cdot ||w||^2}{d}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(I) The proof is based on Schur's lemma and follows the proof for finite groups, with some twists.

(II) Let $V \in \hat{K}$. First we prove that there is d > 0 such that for all $u, v \in V$ we have

$$\int_{\mathcal{K}} |\langle k.v, w \rangle|^2 = \frac{||v||^2 \cdot ||w||^2}{d}.$$

(III) Fix $v_0 \in V$ nonzero. The K-invariant hermitian product

$$(v,w) = \int_{K} \langle k.v, v_0 \rangle \overline{\langle k.w, v_0 \rangle} dk$$

is continuous (Cauchy-Schwarz), thus it is given by $\langle Av, w \rangle$ for some $A \in \operatorname{End}_G(V) = \mathbb{C}$ (Schur's lemma). Thus there is $\alpha(v_0) > 0$ such that

$$\int_{\mathcal{K}} |\langle k.v, v_0 \rangle|^2 dk = \alpha(v_0) ||v||^2, \quad \forall v.$$

$$\int_{\mathcal{K}} |\langle k.v, v_0 \rangle|^2 dk = \int_{\mathcal{K}} |\langle v, k^{-1}.v_0 \rangle|^2 dk = \int_{\mathcal{K}} |\langle k.v_0, v \rangle|^2 dk.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Comparing these formulae yields $\alpha(v) = ||v||^2/d$ for some constant d > 0 and proves the first claim.

$$\int_{\mathcal{K}} |\langle k.v, v_0 \rangle|^2 dk = \int_{\mathcal{K}} |\langle v, k^{-1}.v_0 \rangle|^2 dk = \int_{\mathcal{K}} |\langle k.v_0, v \rangle|^2 dk.$$

Comparing these formulae yields $\alpha(v) = ||v||^2/d$ for some constant d > 0 and proves the first claim.

(II) Next we prove that dim $V < \infty$ and $d = \dim V$. If $e_1, ..., e_n$ is any orthonormal family (not basis a priori!) of V, then $\sum_i |\langle k.v, e_i \rangle|^2 \le ||k.v||^2 = ||v||^2$ for all v, thus

$$||v||^2/d = \int_K (\sum_i |\langle k.v, e_i \rangle|^2) dk \le \int_K ||v||^2 dk = ||v||^2.$$

$$\int_{\mathcal{K}} |\langle k.v, v_0 \rangle|^2 dk = \int_{\mathcal{K}} |\langle v, k^{-1}.v_0 \rangle|^2 dk = \int_{\mathcal{K}} |\langle k.v_0, v \rangle|^2 dk.$$

Comparing these formulae yields $\alpha(v) = ||v||^2/d$ for some constant d > 0 and proves the first claim.

(II) Next we prove that dim $V < \infty$ and $d = \dim V$. If $e_1, ..., e_n$ is any orthonormal family (not basis a priori!) of V, then $\sum_i |\langle k.v, e_i \rangle|^2 \le ||k.v||^2 = ||v||^2 \text{ for all } v, \text{ thus}$

$$||v||^2/d = \int_{\mathcal{K}} \left(\sum_{i} |\langle k.v, e_i \rangle|^2\right) dk \leq \int_{\mathcal{K}} ||v||^2 dk = ||v||^2.$$

(III) Thus dim $V < \infty$. But then we can choose the e_i an ON-basis of V and then $\sum_i |\langle k.v, e_i \rangle|^2 = ||k.v||^2 = ||v||^2$ for all v. The same computation shows that n = d. This finishes the proof for U = V.

(1) Suppose now that $U \neq V$. Using the previous results and Cauchy-Schwarz, we deduce that the *K*-invariant hermitian form

$$B(u,v) = \int_{K} \langle k.u, a_2 \rangle \overline{\langle k.v, b_2 \rangle} dk$$

is continuous, thus given by $\langle A(u), v \rangle$ for some $A \in Hom_{\mathcal{K}}(U, V)$. The latter space is 0, so we are done.

(1) Suppose now that $U \neq V$. Using the previous results and Cauchy-Schwarz, we deduce that the *K*-invariant hermitian form

$$B(u,v) = \int_{\mathcal{K}} \langle k.u, a_2 \rangle \overline{\langle k.v, b_2 \rangle} dk$$

is continuous, thus given by $\langle A(u), v \rangle$ for some $A \in \operatorname{Hom}_{\mathcal{K}}(U, V)$. The latter space is 0, so we are done.

(II) By the previous theorem we can define the character $\chi_{\pi} \in C(K)$ of $\pi \in \hat{K}$, with $\chi_{\pi}(k)$ the trace of the endomorphism $v \to k.v$. Define

$$e_{\pi} = \dim(\pi)\overline{\chi_{\pi}} \in C(K).$$

Application 3: compact groups, Peter-Weyl theory (I) For $\pi \in \hat{K}$ and $V \in \text{Rep}(K)$ we can define a continuous linear map

$$T_{\pi}: V \to V, v \to e_{\pi}.v = \int_{K} e_{\pi}(k)k.vdk.$$

If V is a unitary rep. of K, then T_{π} is a self-adjoint operator on V, since $\overline{e_{\pi}(g^{-1})} = e_{\pi}(g)$ (because, by compactness, the eigenvalues of $v \to k.v$ are on the unit circle). We can re-interpret (exercise) the orthogonality relations as follows:

Theorem a) For $\pi \neq \sigma \in \hat{K}$ we have $e_{\pi} * e_{\pi} = e_{\pi}$ and $e_{\pi} * e_{\sigma} = 0$. The operator T_{π} acts by identity on π and by 0 on any other $\sigma \in \hat{K}$.

b) For any $V \in \text{Rep}(G)$, the operator T_{π} is a projection onto its image $V(\pi)$, called the π -**isotypic component of** V. If V is unitary, T_{π} is an orthogonal projection.

(I) Consider now $H = L^2(K)$, with the action of K by left translation $g.f(x) = f(g^{-1}x)$. Then

$$T_f(\varphi) = f * \varphi, \quad f \in C(K), \varphi \in L^2(K).$$

Theorem (Peter-Weyl) a) We have canonical isomorphisms $L^2(K)(\pi) \simeq \pi \otimes \pi^*$ for $\pi \in \hat{K}$ and $f = \sum_{\pi \in \hat{K}} e_{\pi} * f$ for $f \in L^2(K)$. b) There is a canonical isomorphism of $K \times K$ -representations

$$L^2(K)\simeq \widehat{\bigoplus_{\pi\in \hat{K}}}\pi\otimes \pi^*.$$

(I) By GGPS we have a discrete decomposition

$$L^2(K) = \widehat{igoplus_{\pi \in \hat{K}}} X_\pi \otimes \pi$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

with $X_{\pi} = \operatorname{Hom}_{\mathcal{K}}(\pi, L^{2}(\mathcal{K}))$ and dim $X_{\pi} < \infty$.

(I) By GGPS we have a discrete decomposition

$$L^2(K) = \widehat{igoplus_{\pi\in\hat{K}}} X_\pi \otimes \pi$$

with $X_{\pi} = \operatorname{Hom}_{K}(\pi, L^{2}(K))$ and dim $X_{\pi} < \infty$.

(II) Also T_{π} acts by identity on $X_{\pi} \otimes \pi$ and by 0 on the other summands, so $L^2(\mathcal{K})(\pi) = \operatorname{Im}(T_{\pi}) = X_{\pi} \otimes \pi$. It suffices therefore to prove that $X_{\pi} \simeq \pi^*$.

(I) By GGPS we have a discrete decomposition

$$L^2(K) = \widehat{igoplus_{\pi\in\hat{K}}} X_\pi \otimes \pi$$

with $X_{\pi} = \operatorname{Hom}_{K}(\pi, L^{2}(K))$ and dim $X_{\pi} < \infty$.

- (II) Also T_{π} acts by identity on $X_{\pi} \otimes \pi$ and by 0 on the other summands, so $L^2(\mathcal{K})(\pi) = \operatorname{Im}(T_{\pi}) = X_{\pi} \otimes \pi$. It suffices therefore to prove that $X_{\pi} \simeq \pi^*$.
- (III) We claim that the inclusion $L^2(K) \subset C(K)$ induces an isomorphism $X_{\pi} \simeq \operatorname{Hom}_{K}(\pi, C(K))$. The latter is identified with π^* , by sending $u \in \operatorname{Hom}_{K}(\pi, C(K))$ to $v \in \pi \mapsto u(v)(1)$ and $l \in \pi^*$ to $v \to (k \to l(k.v))$ (Frobenius reciprocity).

To prove the claim, pick φ ∈ X_π, we want to prove that φ(π) ⊂ C(K). Now φ(π) is a finite dimensional subspace sub-representation of L²(K). If f ∈ φ(π), then W = {T_h(φ) | h ∈ C(K)} is finite dimensional (contained in φ(π)) and using Dirac sequences we see that f ∈ W = W, thus there is h ∈ C(K) such that f = T_h(f) ∈ C(K).

Theorem (Peter-Weyl) For any $V \in \text{Rep}(K)$ the space V_K of K-finite vectors is given by $V_K = \sum_{\pi \in \hat{K}} V(\pi)$ and it is dense in V. There are natural isomorphisms

 $\pi \otimes \operatorname{Hom}_{\mathcal{K}}(\pi, V) \simeq V(\pi).$

(1) We first prove the inclusion $V_K \subset \sum_{\pi} V(\pi)$. If $v \in V_K$, then $\operatorname{Span}(K.v)$ is a finite dimensional representation of K, thus a direct sum of irreducible reps. $\pi_1, ..., \pi_n$, and T_{π} acts by identity on π , thus $v \in \sum V(\pi_i)$.

- We first prove the inclusion V_K ⊂ Σ_π V(π). If v ∈ V_K, then Span(K.v) is a finite dimensional representation of K, thus a direct sum of irreducible reps. π₁, ..., π_n, and T_π acts by identity on π, thus v ∈ Σ V(π_i).
- (II) For the rest, the crucial claim is that for $v \in V(\pi)$ $W = \overline{\text{Span}(K.v)} \simeq \pi^{\oplus N}$ for some integer $N \ge 1$. It suffices to check that dim $W < \infty$, since T_{π} acts by identity on W(and kills any $\sigma \in \hat{K}$ different from π).

- We first prove the inclusion V_K ⊂ Σ_π V(π). If v ∈ V_K, then Span(K.v) is a finite dimensional representation of K, thus a direct sum of irreducible reps. π₁, ..., π_n, and T_π acts by identity on π, thus v ∈ Σ V(π_i).
- (II) For the rest, the crucial claim is that for $v \in V(\pi)$ $W = \overline{\operatorname{Span}(K.v)} \simeq \pi^{\oplus N}$ for some integer $N \ge 1$. It suffices to check that dim $W < \infty$, since T_{π} acts by identity on W(and kills any $\sigma \in \hat{K}$ different from π).
- (III) By Hahn-Banach it suffices to check that dim $W^* < \infty$ (continuous dual). But one easily checks that sending $I \in W^*$ to $f_I : k \to I(k^{-1}.v)$ embeds W^* in the finite dimensional space of functions f such that $T_{\pi}(f) = (f)$ (recall that T_{π} is compact!).

(1) Next, we prove that V_K is dense in V. If not, pick $l \in V^*$ nonzero but vanishing on V_K . Fix $v \in V$ and set $\varphi(k) = l(k^{-1}.v)$, then $\varphi \in C(K)$ and one checks that $e_{\pi} * \varphi = 0$ for $\pi \in \hat{K}$, thus by the previous theorem $\varphi = 0$ and l = 0.

Theorem (Peter-Weyl) Any irreducible $V \in \text{Rep}(K)$ is finite dimensional.

Each $V(\pi)$ is 0 or V by irreducibility, and $\sum V(\pi)$ is dense, so for some π we have $V(\pi) = V$. But the previous theorem shows that $V(\pi)$ is a direct sum of copies of π , thus $V \simeq \pi$ and we are done.

Let H, H' be unitary representations of G (with the usual hypotheses on G), with H irreducible. Prove that any T ∈ Hom_G(H, H') has closed image and induces an isomorphism between H and a sub-representation of H'. Hint: use Schur's lemma.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let H, H' be unitary representations of G (with the usual hypotheses on G), with H irreducible. Prove that any T ∈ Hom_G(H, H') has closed image and induces an isomorphism between H and a sub-representation of H'. Hint: use Schur's lemma.
- (II) Let H, H' be unitary representations of G such that $H \simeq H'$ in $\operatorname{Rep}(G)$. Prove that there is an isomorphism $U \in \operatorname{Hom}_G(H, H')$ such that ||U(h)|| = ||h|| for all $h \in H$.

- Let H, H' be unitary representations of G (with the usual hypotheses on G), with H irreducible. Prove that any T ∈ Hom_G(H, H') has closed image and induces an isomorphism between H and a sub-representation of H'. Hint: use Schur's lemma.
- (II) Let H, H' be unitary representations of G such that $H \simeq H'$ in $\operatorname{Rep}(G)$. Prove that there is an isomorphism $U \in \operatorname{Hom}_G(H, H')$ such that ||U(h)|| = ||h|| for all $h \in H$.
- (III) Prove that the characters φ_{π} of elements $\pi \in \hat{K}$ form an ON-basis of $L^2(K)$. Also, a finite dimensional representation V of K is irreducible if and only if $\langle \chi_V, \chi_V \rangle = 1$.

(1) In the next exercises H is a separable Hilbert space and we use the notations B(H), HS(H), TC(H), etc as in the lecture.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- (1) In the next exercises H is a separable Hilbert space and we use the notations B(H), HS(H), TC(H), etc as in the lecture.
- (II) Let $T \in HS(H)$ and let (e_n) and $(f_n)_n$ be an ON-bases of H. Using the Plancherel formula twice, prove that $\sum_n ||T(e_n)||^2 = \sum_n ||T^*(f_n)||^2$. Deduce that $T^* \in HS(H)$ and that $\sum_n ||T(e_n)||^2$ is independent of the ON-basis $(e_n)_n$.

- In the next exercises H is a separable Hilbert space and we use the notations B(H), HS(H), TC(H), etc as in the lecture.
- (II) Let $T \in HS(H)$ and let (e_n) and $(f_n)_n$ be an ON-bases of H. Using the Plancherel formula twice, prove that $\sum_n ||T(e_n)||^2 = \sum_n ||T^*(f_n)||^2$. Deduce that $T^* \in HS(H)$ and that $\sum_n ||T(e_n)||^2$ is independent of the ON-basis $(e_n)_n$.

(III) Prove that any $T \in HS(H)$ is compact. Hint: pick an ON-basis (e_n) and consider the operators $T_n(v) = \sum_{k \le n} \langle v, e_k \rangle T(e_k)$.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

- (1) Let $T \in B(H)$ and $S \in HS(H)$. a) Prove that $TS, ST \in HS(H)$.
 - b) If $T \in HS(H)$, prove that $TS, ST \in TC(H)$.

(II) In this exercise we will prove that any $T \in TC(H)$ can be written T = AB with $A, B \in HS(H)$.

a) Explain why T is compact and why $\ker(T^*T) = \ker(T)$. Deduce that $\ker(T)^{\perp}$ has an ON-basis $(v_n)_n$ such that $T^*Tv_n = \lambda_n v_n$ for some $\lambda_n > 0$ tending to 0.

b) Define operators S, U by setting them equal to 0 on $\ker(T)$ and asking that $Sv_n = \sqrt[4]{\lambda_n}v_n$ and $Uv_n = \frac{1}{\sqrt{\lambda_n}}v_n$. Prove that $T = US^2$ and that ||Uv|| = ||v|| for $v \in \ker(T)^{\perp}$.

c) Let (e_n) be an ON-basis of H such that $\sum ||Te_n|| < \infty$. Prove that $||Te_n|| \ge ||Se_n||^2$ (use Cauchy-Schwarz) and deduce that $S, U \in HS(H)$. Conclude.

- (1) Let $T \in TC(H)$ and let $(e_n)_n$ and $(f_n)_n$ be two ON-bases of H.
 - a) Prove that

$$\sum_{k} |\langle Te_n, f_k \rangle \langle f_k, e_n \rangle| \le ||Te_n||$$

and deduce that $\sum_{n,k} |\langle Te_n, f_k \rangle \langle f_k, e_n \rangle| < \infty$. b) By computing $\sum_{n,k} \langle Te_n, f_k \rangle \langle f_k, e_n \rangle$ in two different ways, prove that

$$\sum_{n} \langle Te_n, e_n \rangle = \sum_{n} \langle Tf_n, f_n \rangle.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <